File size: 4,217 Bytes
55175ae 27e6c9e 55175ae 9f743c8 55175ae 27e6c9e 55175ae 27e6c9e 55175ae 27e6c9e 55175ae 27e6c9e 55175ae 27e6c9e 9f743c8 27e6c9e 55175ae 27e6c9e 55175ae 0aa41fc 27e6c9e 55175ae 441035c 55175ae 27e6c9e 55175ae 27e6c9e 55175ae c2908e2 55175ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import datasets
# coding=utf-8
# Copyright 2024 HuggingFace Datasets Authors.
# Lint as: python3
"""The Shipping label Dataset."""
logger = datasets.logging.get_logger(__name__)
_CITATION = """
"""
_DESCRIPTION = """
The goal of this task is to provide a dataset for name entity recognition."""
_URL = "https://raw.githubusercontent.com/SanghaviHarshPankajkumar/shipping_label_project/main/NER/data/"
_TRAINING_FILE = "train.txt"
_VAL_FILE = "val.txt"
_TEST_FILE = "test.txt"
class shipping_labels_Config(datasets.BuilderConfig):
"""Shipping Label Dataset for ner"""
def __init__(self, **kwargs):
"""BuilderConfig for Shipping Label data.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(shipping_labels_Config, self).__init__(**kwargs)
class shiping_label_ner(datasets.GeneratorBasedBuilder):
"""Shipping Label Dataset for ner"""
BUILDER_CONFIGS = [
shipping_labels_Config(
name="shipping_label_ner", version=datasets.Version("1.0.0"), description="Shipping Label Dataset for ner"
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-GCNUM",
"I-GCNUM",
"B-TRACK-ID",
"I-TRACK-ID"
]
)
),
}
),
supervised_keys=None,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
"train": f"{_URL}{_TRAINING_FILE}",
"test": f"{_URL}{_TEST_FILE}",
"val": f"{_URL}{_VAL_FILE}",
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}),
]
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
current_tokens = []
current_labels = []
sentence_counter = 0
for row in f:
row = row.rstrip()
if row:
token, label = row.split(" ")
current_tokens.append(token)
current_labels.append(label)
else:
# New sentence
if not current_tokens:
# Consecutive empty lines will cause empty sentences
continue
assert len(current_tokens) == len(current_labels), "💔 between len of tokens & labels"
sentence = (
sentence_counter,
{
"id": str(sentence_counter),
"tokens": current_tokens,
"ner_tags": current_labels,
},
)
sentence_counter += 1
current_tokens = []
current_labels = []
yield sentence
# Don't forget last sentence in dataset 🧐
if current_tokens:
yield sentence_counter, {
"id": str(sentence_counter),
"tokens": current_tokens,
"ner_tags": current_labels,
} |