from datasets import load_dataset, DatasetDict | |
# Prepare labels | |
seeking_tenant_label = "søger lejer / seeking tenant" | |
not_seeking_tenant_label = "søger ikke lejer / does not seek tenant" | |
candidate_labels = [seeking_tenant_label, not_seeking_tenant_label] | |
# Function to map boolean to a categorical label index | |
def label_mapping(example): | |
if example["is_seeking_tenant"]: | |
return {"labels": candidate_labels.index(seeking_tenant_label)} | |
else: | |
return {"labels": candidate_labels.index(not_seeking_tenant_label)} | |
# Load your dataset from a local JSONL file | |
dataset = load_dataset("json", data_files="listings.jsonl") | |
# Split the dataset into train and temp | |
split_dataset = dataset["train"].train_test_split(test_size=0.3) | |
train_dataset = split_dataset["train"].map(label_mapping) | |
temp_dataset = split_dataset["test"] | |
# Split the temp dataset into validation and test | |
split_temp_dataset = temp_dataset.train_test_split(test_size=0.5) | |
validation_dataset = split_temp_dataset["train"].map(label_mapping) | |
test_dataset = split_temp_dataset["test"].map(label_mapping) | |
# Combine all splits into a DatasetDict | |
final_dataset = DatasetDict( | |
{"train": train_dataset, "validation": validation_dataset, "test": test_dataset} | |
) | |
final_dataset.push_to_hub("hoaj/fb-housing-posts") | |