Datasets:
File size: 4,336 Bytes
6ef626f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import json
import os
import datasets
_CITATION = """\
@dataset{kobkrit_viriyayudhakorn_2021_4539916,
author = {Kobkrit Viriyayudhakorn and
Charin Polpanumas},
title = {iapp_wiki_qa_squad},
month = feb,
year = 2021,
publisher = {Zenodo},
version = 1,
doi = {10.5281/zenodo.4539916},
url = {https://doi.org/10.5281/zenodo.4539916}
}
"""
_DESCRIPTION = """\
`iapp_wiki_qa_squad` is an extractive question answering dataset from Thai Wikipedia articles.
It is adapted from [the original iapp-wiki-qa-dataset](https://github.com/iapp-technology/iapp-wiki-qa-dataset)
to [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/) format, resulting in
5761/742/739 questions from 1529/191/192 articles.
"""
class IappWikiQaSquadConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
"""BuilderConfig
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(IappWikiQaSquadConfig, self).__init__(**kwargs)
class IappWikiQaSquad(datasets.GeneratorBasedBuilder):
_DOWNLOAD_URL = "https://github.com/iapp-technology/iapp-wiki-qa-dataset/raw/main/squad_format/data.zip"
_TRAIN_FILE = "train.jsonl"
_VALID_FILE = "valid.jsonl"
_TEST_FILE = "test.jsonl"
BUILDER_CONFIGS = [
IappWikiQaSquadConfig(
name="iapp_wiki_qa_squad",
version=datasets.Version("1.0.0"),
description=_DESCRIPTION,
),
]
def _info(self):
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# datasets.features.FeatureConnectors
features=datasets.Features(
{
"question_id": datasets.Value("string"),
"article_id": datasets.Value("string"),
"title": datasets.Value("string"),
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string"),
"answer_start": datasets.Value("int32"),
"answer_end": datasets.Value("int32"),
}
),
}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://github.com/iapp-technology/iapp-wiki-qa-dataset/",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
arch_path = dl_manager.download_and_extract(self._DOWNLOAD_URL)
data_dir = os.path.join(arch_path, "data")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": os.path.join(data_dir, self._TRAIN_FILE)},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": os.path.join(data_dir, self._VALID_FILE)},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": os.path.join(data_dir, self._TEST_FILE)},
),
]
def _generate_examples(self, filepath):
"""Yields examples."""
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
yield id_, {
"question_id": data["question_id"],
"article_id": data["article_id"],
"title": data["title"],
"context": data["context"],
"question": data["question"],
"answers": {
"text": data["answers"]["text"],
"answer_start": data["answers"]["answer_start"],
"answer_end": data["answers"]["answer_end"],
},
}
|