|
"""FQuAD dataset.""" |
|
|
|
|
|
import json |
|
import os |
|
from textwrap import dedent |
|
|
|
import datasets |
|
|
|
|
|
_HOMEPAGE = "https://fquad.illuin.tech/" |
|
|
|
_DESCRIPTION = """\ |
|
FQuAD: French Question Answering Dataset |
|
We introduce FQuAD, a native French Question Answering Dataset. FQuAD contains 25,000+ question and answer pairs. |
|
Finetuning CamemBERT on FQuAD yields a F1 score of 88% and an exact match of 77.9%. |
|
""" |
|
|
|
_CITATION = """\ |
|
@ARTICLE{2020arXiv200206071 |
|
author = {Martin, d'Hoffschmidt and Maxime, Vidal and |
|
Wacim, Belblidia and Tom, Brendlé}, |
|
title = "{FQuAD: French Question Answering Dataset}", |
|
journal = {arXiv e-prints}, |
|
keywords = {Computer Science - Computation and Language}, |
|
year = "2020", |
|
month = "Feb", |
|
eid = {arXiv:2002.06071}, |
|
pages = {arXiv:2002.06071}, |
|
archivePrefix = {arXiv}, |
|
eprint = {2002.06071}, |
|
primaryClass = {cs.CL} |
|
} |
|
""" |
|
|
|
|
|
class Fquad(datasets.GeneratorBasedBuilder): |
|
"""FQuAD dataset.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
@property |
|
def manual_download_instructions(self): |
|
return dedent("""\ |
|
To access the data for this dataset, you need to request it at: |
|
https://fquad.illuin.tech/#download |
|
|
|
Unzip the downloaded file with `unzip download-form-fquad1.0.zip -d <path/to/directory>`, into a destination |
|
directory <path/to/directory>, which will contain the two data files train.json and valid.json. |
|
|
|
To load the dataset, pass the full path to the destination directory |
|
in your call to the loading function: `datasets.load_dataset("fquad", data_dir="<path/to/directory>")` |
|
""") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"context": datasets.Value("string"), |
|
"questions": datasets.features.Sequence(datasets.Value("string")), |
|
"answers": datasets.features.Sequence( |
|
{"texts": datasets.Value("string"), "answers_starts": datasets.Value("int32")} |
|
), |
|
|
|
} |
|
), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"filepath": os.path.join(data_dir, "train.json")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={"filepath": os.path.join(data_dir, "valid.json")}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
data = json.load(f) |
|
for id1, examples in enumerate(data["data"]): |
|
for id2, example in enumerate(examples["paragraphs"]): |
|
questions = [question["question"] for question in example["qas"]] |
|
answers = [answer["answers"] for answer in example["qas"]] |
|
texts = [answer[0]["text"] for answer in answers] |
|
answers_starts = [answer[0]["answer_start"] for answer in answers] |
|
|
|
yield str(id1) + "_" + str(id2), { |
|
"context": example["context"], |
|
"questions": questions, |
|
"answers": {"texts": texts, "answers_starts": answers_starts}, |
|
} |
|
|