Datasets:
File size: 46,925 Bytes
2f33750 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv(\"../Jiggins_Zenodo_Img_Master.csv\", low_memory=False)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"CAMID 12586\n",
"X 49359\n",
"Image_name 37821\n",
"View 10\n",
"zenodo_name 36\n",
"zenodo_link 32\n",
"Sequence 11301\n",
"Taxonomic_Name 363\n",
"Locality 645\n",
"Sample_accession 1571\n",
"Collected_by 12\n",
"Other_ID 3088\n",
"Date 810\n",
"Dataset 8\n",
"Store 142\n",
"Brood 226\n",
"Death_Date 82\n",
"Cross_Type 30\n",
"Stage 1\n",
"Sex 3\n",
"Unit_Type 6\n",
"file_type 3\n",
"dtype: int64"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.nunique()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"file_type\n",
"jpg 37072\n",
"raw 12226\n",
"tif 61\n",
"Name: count, dtype: int64"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.file_type.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"View\n",
"dorsal 15128\n",
"ventral 13424\n",
"Dorsal 8360\n",
"Ventral 8090\n",
"ventral 1644\n",
"forewing dorsal 406\n",
"hindwing dorsal 406\n",
"forewing ventral 406\n",
"hindwing ventral 406\n",
"Dorsal and Ventral 18\n",
"Name: count, dtype: int64"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.View.value_counts()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Not great that `ventral` gets listed twice as lowercase and _again_ as `Ventral`.\n",
"\n",
"### Standardize `View` Column\n",
"Let's standardize `View` so that there isn't a discrepancy based on case."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"View\n",
"dorsal 23488\n",
"ventral 21514\n",
"ventral 1644\n",
"forewing dorsal 406\n",
"hindwing dorsal 406\n",
"forewing ventral 406\n",
"hindwing ventral 406\n",
"dorsal and ventral 18\n",
"Name: count, dtype: int64"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[\"View\"] = df.View.str.lower()\n",
"df.View.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['dorsal' 'ventral' nan 'dorsal and ventral' 'ventral ' 'forewing dorsal'\n",
" 'hindwing dorsal' 'forewing ventral' 'hindwing ventral']\n"
]
}
],
"source": [
"print(df.View.unique())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Yes, one has a space after it, so we'll replace that."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"View\n",
"dorsal 23488\n",
"ventral 23158\n",
"forewing dorsal 406\n",
"hindwing dorsal 406\n",
"forewing ventral 406\n",
"hindwing ventral 406\n",
"dorsal and ventral 18\n",
"Name: count, dtype: int64"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.loc[df[\"View\"] == \"ventral \", \"View\"] = \"ventral\"\n",
"df.View.value_counts() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Add Record Number Column\n",
"We'll add a `record_number` column for easier matching to the license/citation file."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"def get_record_number(url):\n",
" num = url.split(sep = \"/\")[-1]\n",
" return num"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"32"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[\"record_number\"] = df.zenodo_link.apply(get_record_number)\n",
"df.record_number.nunique()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We have 32 unique records represented in the full dataset. When we reduce down to just the Heliconius images, this will probably be less."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Add `species` and `subspecies` Columns\n",
"This will make some analysis easier and allow for easy viewing on the [Data Dashboard](https://huggingface.co/spaces/imageomics/dashboard-prototype)."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"def get_species(taxa_name):\n",
" if type(taxa_name) != float: #taxa name not null\n",
" species = taxa_name.split(sep = \" ssp\")[0]\n",
" return species\n",
" else:\n",
" return taxa_name"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"def get_subspecies(taxa_name):\n",
" if type(taxa_name) != float:\n",
" if \"ssp.\" in taxa_name:\n",
" subspecies = taxa_name.split(sep = \"ssp. \")[1]\n",
" elif \"ssp \" in taxa_name:\n",
" subspecies = taxa_name.split(sep = \"ssp \")[1]\n",
" else:\n",
" subspecies = None\n",
" else:\n",
" subspecies = None\n",
" return subspecies"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"246"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[\"species\"] = df.Taxonomic_Name.apply(get_species)\n",
"df.species.nunique()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"139"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[\"subspecies\"] = df.Taxonomic_Name.apply(get_subspecies)\n",
"df.subspecies.nunique()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Cross Types are labeled differently:\n",
"They are all abbreviations, we have `malleti (mal), plesseni (ple), notabilis (not), lativitta (lat)`, and Neil would guess that `latRo` refers to lativitta with a rounded apical band (e.g., a phenotypic variant of lativitta), but he couldn't say for sure without some more digging, so that will have to stay as-is. We will leave the `Test cross...` ones, but there is not much more to do with them."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['mal', 'mal x ple', 'ple', 'ple x mal', 'latRo x not',\n",
" '(latRo x not) x not', '(mal x ple) x mal', '(mal x ple) x ple',\n",
" 'ple x (mal x ple)', '(ple x mal) x (mal x ple)', 'lat x not',\n",
" '(ple x mal) x ple', '(mal x ple) x (mal x ple)',\n",
" '(ple x mal) x mal', '(ple x mal) x (ple x mal)',\n",
" '(mal x ple) x (ple x mal)', 'hybrid', 'mal x (ple x mal)',\n",
" '(lat x not) x lat', '(lat x not) x not', 'Ac heterozygote',\n",
" 'ple x (ple x mal)', '2 banded', 'lat',\n",
" 'Test cross (2 banded F2 x 2 banded F2)',\n",
" 'Test cross (4 spots x 2 banded)', 'Test cross (N heterozygozity)',\n",
" 'Test cross (short HW bar)', 'Test cross (4 spots x 4 spots)',\n",
" 'Test cross (N heterozygocity - NBNN x mal - thin)'], dtype=object)"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.Cross_Type.dropna().unique()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"def clean_cross_types(cross_type):\n",
" if type(cross_type) != float:\n",
" cross_type = cross_type.replace(\"mal\", \"malleti\")\n",
" cross_type = cross_type.replace(\"ple\", \"plesseni\")\n",
" cross_type = cross_type.replace(\"not\", \"notabilis\")\n",
" if \"latRo\" not in cross_type:\n",
" #latRo does not cross with lativitta, so only apply when latRo isn't present\n",
" cross_type = cross_type.replace(\"lat\", \"lativitta\")\n",
" return cross_type"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"df[\"Cross_Type\"] = df[\"Cross_Type\"].apply(clean_cross_types)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can fill these cross types in for the `subspecies` column (all Cross Types are just labeled to the spceies level in `Taxonomic_Name`, so they did not get processed previously)."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"156"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cross_type_subspecies = [ct for ct in list(df.Cross_Type.dropna().unique()) if \"Test\" not in ct and \"banded\" not in ct]\n",
"cross_type_subspecies.remove(\"hybrid\")\n",
"cross_type_subspecies.remove(\"Ac heterozygote\")\n",
"\n",
"for ct in cross_type_subspecies:\n",
" df.loc[df[\"Cross_Type\"] == ct, \"subspecies\"] = ct\n",
"\n",
"df.subspecies.nunique()\n"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"21"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(cross_type_subspecies)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"subspecies\n",
"(malleti x plesseni) x malleti 1204\n",
"plesseni x (malleti x plesseni) 600\n",
"malleti x (plesseni x malleti) 370\n",
"(plesseni x malleti) x plesseni 363\n",
"(plesseni x malleti) x (malleti x plesseni) 354\n",
"(plesseni x malleti) x (plesseni x malleti) 286\n",
"(malleti x plesseni) x plesseni 278\n",
"plesseni x malleti 234\n",
"malleti x plesseni 192\n",
"lativitta x notabilis 136\n",
"(lativitta x notabilis) x lativitta 110\n",
"plesseni x (plesseni x malleti) 106\n",
"(lativitta x notabilis) x notabilis 106\n",
"(malleti x plesseni) x (malleti x plesseni) 98\n",
"(plesseni x malleti) x malleti 80\n",
"(malleti x plesseni) x (plesseni x malleti) 56\n",
"malleti 28\n",
"plesseni 28\n",
"(latRo x notabilis) x notabilis 16\n",
"latRo x notabilis 4\n",
"lativitta 4\n",
"Name: count, dtype: int64"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.loc[df[\"Cross_Type\"].notna(), \"subspecies\"].value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4\n"
]
},
{
"data": {
"text/plain": [
"['malleti', 'plesseni', 'plesseni x malleti', 'lativitta']"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"already_present_subspecies = []\n",
"\n",
"for subspecies in list(df.loc[df[\"Cross_Type\"].notna(), \"subspecies\"].dropna().unique()):\n",
" if subspecies in list(df.loc[~df[\"Cross_Type\"].notna(), \"subspecies\"].dropna().unique()):\n",
" already_present_subspecies.append(subspecies)\n",
"\n",
"print(len(already_present_subspecies))\n",
"already_present_subspecies"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Perfect, this adds 17 more subspecies (`lativitta`, `plessani`, `maletti`, and `plesseni x malleti` were already represented). Note, this is based on _exact_ duplicates. `notabilis x lativitta` is also already in the dataset, but the order (where the cross types are concerned) general goes `maternal x paternal`."
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>CAMID</th>\n",
" <th>X</th>\n",
" <th>Image_name</th>\n",
" <th>View</th>\n",
" <th>zenodo_name</th>\n",
" <th>zenodo_link</th>\n",
" <th>Sequence</th>\n",
" <th>Taxonomic_Name</th>\n",
" <th>Locality</th>\n",
" <th>Sample_accession</th>\n",
" <th>...</th>\n",
" <th>Brood</th>\n",
" <th>Death_Date</th>\n",
" <th>Cross_Type</th>\n",
" <th>Stage</th>\n",
" <th>Sex</th>\n",
" <th>Unit_Type</th>\n",
" <th>file_type</th>\n",
" <th>record_number</th>\n",
" <th>species</th>\n",
" <th>subspecies</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1986</th>\n",
" <td>19N1989</td>\n",
" <td>21369</td>\n",
" <td>19N1989_v.JPG</td>\n",
" <td>ventral</td>\n",
" <td>0.sheffield.ps.nn.ikiam.batch2.csv</td>\n",
" <td>https://zenodo.org/record/4288311</td>\n",
" <td>1,989</td>\n",
" <td>Heliconius melpomene ssp. malleti</td>\n",
" <td>Ikiam Mariposario</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>IKIAM.P44</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>Male</td>\n",
" <td>reared</td>\n",
" <td>jpg</td>\n",
" <td>4288311</td>\n",
" <td>Heliconius melpomene</td>\n",
" <td>malleti</td>\n",
" </tr>\n",
" <tr>\n",
" <th>45062</th>\n",
" <td>CAM044423</td>\n",
" <td>34391</td>\n",
" <td>CAM044423_d.CR2</td>\n",
" <td>dorsal</td>\n",
" <td>batch2.Peru.image.names.Zenodo.csv</td>\n",
" <td>https://zenodo.org/record/4287444</td>\n",
" <td>44,423</td>\n",
" <td>Taygetis cleopatra</td>\n",
" <td>B6old6</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>raw</td>\n",
" <td>4287444</td>\n",
" <td>Taygetis cleopatra</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>48534</th>\n",
" <td>E23</td>\n",
" <td>37555</td>\n",
" <td>E23_d.CR2</td>\n",
" <td>dorsal</td>\n",
" <td>Anniina.Matilla.Field.Caught.E.csv</td>\n",
" <td>https://zenodo.org/record/2554218</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>raw</td>\n",
" <td>2554218</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>45206</th>\n",
" <td>CAM044445</td>\n",
" <td>37132</td>\n",
" <td>CAM044445_d.JPG</td>\n",
" <td>dorsal</td>\n",
" <td>batch3.Peru.image.names.Zenodo.csv</td>\n",
" <td>https://zenodo.org/record/4288250</td>\n",
" <td>44,445</td>\n",
" <td>Taygetis cleopatra</td>\n",
" <td>B4old2</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>jpg</td>\n",
" <td>4288250</td>\n",
" <td>Taygetis cleopatra</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12212</th>\n",
" <td>CAM010238</td>\n",
" <td>23307</td>\n",
" <td>10238v.jpg</td>\n",
" <td>ventral</td>\n",
" <td>Heliconius_wing_old_photos_2001_2019_part1.csv</td>\n",
" <td>https://zenodo.org/record/2552371</td>\n",
" <td>10,238</td>\n",
" <td>Heliconius sp.</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>B043</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>Female</td>\n",
" <td>reared</td>\n",
" <td>jpg</td>\n",
" <td>2552371</td>\n",
" <td>Heliconius sp.</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>39059</th>\n",
" <td>CAM043418</td>\n",
" <td>30654</td>\n",
" <td>CAM043418_v.JPG</td>\n",
" <td>ventral</td>\n",
" <td>batch1.Peru.image.names.Zenodo.csv</td>\n",
" <td>https://zenodo.org/record/3569598</td>\n",
" <td>43,418</td>\n",
" <td>Archaeoprepona licomedes</td>\n",
" <td>B6rec6</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>jpg</td>\n",
" <td>3569598</td>\n",
" <td>Archaeoprepona licomedes</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>38163</th>\n",
" <td>CAM043170</td>\n",
" <td>29755</td>\n",
" <td>CAM043170_d.CR2</td>\n",
" <td>dorsal</td>\n",
" <td>batch1.Peru.image.names.Zenodo.csv</td>\n",
" <td>https://zenodo.org/record/3569598</td>\n",
" <td>43,170</td>\n",
" <td>Adelpha mesentina</td>\n",
" <td>F3rec2</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>raw</td>\n",
" <td>3569598</td>\n",
" <td>Adelpha mesentina</td>\n",
" <td>None</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>7 rows × 25 columns</p>\n",
"</div>"
],
"text/plain": [
" CAMID X Image_name View \\\n",
"1986 19N1989 21369 19N1989_v.JPG ventral \n",
"45062 CAM044423 34391 CAM044423_d.CR2 dorsal \n",
"48534 E23 37555 E23_d.CR2 dorsal \n",
"45206 CAM044445 37132 CAM044445_d.JPG dorsal \n",
"12212 CAM010238 23307 10238v.jpg ventral \n",
"39059 CAM043418 30654 CAM043418_v.JPG ventral \n",
"38163 CAM043170 29755 CAM043170_d.CR2 dorsal \n",
"\n",
" zenodo_name \\\n",
"1986 0.sheffield.ps.nn.ikiam.batch2.csv \n",
"45062 batch2.Peru.image.names.Zenodo.csv \n",
"48534 Anniina.Matilla.Field.Caught.E.csv \n",
"45206 batch3.Peru.image.names.Zenodo.csv \n",
"12212 Heliconius_wing_old_photos_2001_2019_part1.csv \n",
"39059 batch1.Peru.image.names.Zenodo.csv \n",
"38163 batch1.Peru.image.names.Zenodo.csv \n",
"\n",
" zenodo_link Sequence \\\n",
"1986 https://zenodo.org/record/4288311 1,989 \n",
"45062 https://zenodo.org/record/4287444 44,423 \n",
"48534 https://zenodo.org/record/2554218 NaN \n",
"45206 https://zenodo.org/record/4288250 44,445 \n",
"12212 https://zenodo.org/record/2552371 10,238 \n",
"39059 https://zenodo.org/record/3569598 43,418 \n",
"38163 https://zenodo.org/record/3569598 43,170 \n",
"\n",
" Taxonomic_Name Locality Sample_accession \\\n",
"1986 Heliconius melpomene ssp. malleti Ikiam Mariposario NaN \n",
"45062 Taygetis cleopatra B6old6 NaN \n",
"48534 NaN NaN NaN \n",
"45206 Taygetis cleopatra B4old2 NaN \n",
"12212 Heliconius sp. NaN NaN \n",
"39059 Archaeoprepona licomedes B6rec6 NaN \n",
"38163 Adelpha mesentina F3rec2 NaN \n",
"\n",
" ... Brood Death_Date Cross_Type Stage Sex Unit_Type file_type \\\n",
"1986 ... IKIAM.P44 NaN NaN NaN Male reared jpg \n",
"45062 ... NaN NaN NaN NaN NaN NaN raw \n",
"48534 ... NaN NaN NaN NaN NaN NaN raw \n",
"45206 ... NaN NaN NaN NaN NaN NaN jpg \n",
"12212 ... B043 NaN NaN NaN Female reared jpg \n",
"39059 ... NaN NaN NaN NaN NaN NaN jpg \n",
"38163 ... NaN NaN NaN NaN NaN NaN raw \n",
"\n",
" record_number species subspecies \n",
"1986 4288311 Heliconius melpomene malleti \n",
"45062 4287444 Taygetis cleopatra None \n",
"48534 2554218 NaN None \n",
"45206 4288250 Taygetis cleopatra None \n",
"12212 2552371 Heliconius sp. None \n",
"39059 3569598 Archaeoprepona licomedes None \n",
"38163 3569598 Adelpha mesentina None \n",
"\n",
"[7 rows x 25 columns]"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.sample(7)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Add Genus Column\n",
"\n",
"This willl allow us to easily remove all non Heliconius samples, and make some image stats easier to see."
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"def get_genus(species):\n",
" if type(species) != float: #taxa name not null\n",
" return species.split(sep = \" \")[0]\n",
" return species"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"94"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[\"genus\"] = df[\"species\"].apply(get_genus)\n",
"df.genus.nunique()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Final stats for all data summarized here."
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"CAMID 12586\n",
"X 49359\n",
"Image_name 37821\n",
"View 7\n",
"zenodo_name 36\n",
"zenodo_link 32\n",
"Sequence 11301\n",
"Taxonomic_Name 363\n",
"Locality 645\n",
"Sample_accession 1571\n",
"Collected_by 12\n",
"Other_ID 3088\n",
"Date 810\n",
"Dataset 8\n",
"Store 142\n",
"Brood 226\n",
"Death_Date 82\n",
"Cross_Type 30\n",
"Stage 1\n",
"Sex 3\n",
"Unit_Type 6\n",
"file_type 3\n",
"record_number 32\n",
"species 246\n",
"subspecies 156\n",
"genus 94\n",
"dtype: int64"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.nunique()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 49359 entries, 0 to 49358\n",
"Data columns (total 26 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 CAMID 49359 non-null object\n",
" 1 X 49359 non-null int64 \n",
" 2 Image_name 49359 non-null object\n",
" 3 View 48288 non-null object\n",
" 4 zenodo_name 49359 non-null object\n",
" 5 zenodo_link 49359 non-null object\n",
" 6 Sequence 48424 non-null object\n",
" 7 Taxonomic_Name 45473 non-null object\n",
" 8 Locality 34015 non-null object\n",
" 9 Sample_accession 5884 non-null object\n",
" 10 Collected_by 5280 non-null object\n",
" 11 Other_ID 14382 non-null object\n",
" 12 Date 33718 non-null object\n",
" 13 Dataset 40405 non-null object\n",
" 14 Store 39485 non-null object\n",
" 15 Brood 14942 non-null object\n",
" 16 Death_Date 318 non-null object\n",
" 17 Cross_Type 5133 non-null object\n",
" 18 Stage 15 non-null object\n",
" 19 Sex 36243 non-null object\n",
" 20 Unit_Type 33890 non-null object\n",
" 21 file_type 49359 non-null object\n",
" 22 record_number 49359 non-null object\n",
" 23 species 45473 non-null object\n",
" 24 subspecies 25715 non-null object\n",
" 25 genus 45473 non-null object\n",
"dtypes: int64(1), object(25)\n",
"memory usage: 9.8+ MB\n"
]
}
],
"source": [
"df.info()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Observe that not all images have a species label."
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>CAMID</th>\n",
" <th>X</th>\n",
" <th>Image_name</th>\n",
" <th>View</th>\n",
" <th>zenodo_name</th>\n",
" <th>zenodo_link</th>\n",
" <th>Sequence</th>\n",
" <th>Taxonomic_Name</th>\n",
" <th>Locality</th>\n",
" <th>Sample_accession</th>\n",
" <th>...</th>\n",
" <th>Death_Date</th>\n",
" <th>Cross_Type</th>\n",
" <th>Stage</th>\n",
" <th>Sex</th>\n",
" <th>Unit_Type</th>\n",
" <th>file_type</th>\n",
" <th>record_number</th>\n",
" <th>species</th>\n",
" <th>subspecies</th>\n",
" <th>genus</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>48538</th>\n",
" <td>E24</td>\n",
" <td>37559</td>\n",
" <td>E24_d.CR2</td>\n",
" <td>dorsal</td>\n",
" <td>Anniina.Matilla.Field.Caught.E.csv</td>\n",
" <td>https://zenodo.org/record/2554218</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>raw</td>\n",
" <td>2554218</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>37246</th>\n",
" <td>CAM042045</td>\n",
" <td>43973</td>\n",
" <td>CAM042045_v.JPG</td>\n",
" <td>ventral</td>\n",
" <td>Collection_August2019.csv</td>\n",
" <td>https://zenodo.org/record/5731587</td>\n",
" <td>42,045</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>jpg</td>\n",
" <td>5731587</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>37484</th>\n",
" <td>CAM042166</td>\n",
" <td>44211</td>\n",
" <td>CAM042166_v.JPG</td>\n",
" <td>ventral</td>\n",
" <td>Collection_August2019.csv</td>\n",
" <td>https://zenodo.org/record/5731587</td>\n",
" <td>42,166</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>jpg</td>\n",
" <td>5731587</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>48780</th>\n",
" <td>E83</td>\n",
" <td>37777</td>\n",
" <td>E83_v.CR2</td>\n",
" <td>ventral</td>\n",
" <td>Anniina.Matilla.Field.Caught.E.csv</td>\n",
" <td>https://zenodo.org/record/2554218</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>raw</td>\n",
" <td>2554218</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3118</th>\n",
" <td>19N2627</td>\n",
" <td>22498</td>\n",
" <td>19N2627_v.CR2</td>\n",
" <td>NaN</td>\n",
" <td>0.sheffield.ps.nn.ikiam.batch2.csv</td>\n",
" <td>https://zenodo.org/record/4288311</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>raw</td>\n",
" <td>4288311</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>46111</th>\n",
" <td>CAM045060</td>\n",
" <td>42806</td>\n",
" <td>CAM045060_v.CR2</td>\n",
" <td>ventral</td>\n",
" <td>image.names.cook.island.erato.csv</td>\n",
" <td>https://zenodo.org/record/5526257</td>\n",
" <td>45,060</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>raw</td>\n",
" <td>5526257</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>39502</th>\n",
" <td>CAM043576</td>\n",
" <td>31097</td>\n",
" <td>CAM043576_v.CR2</td>\n",
" <td>ventral</td>\n",
" <td>batch2.Peru.image.names.Zenodo.csv</td>\n",
" <td>https://zenodo.org/record/4287444</td>\n",
" <td>43,576</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>raw</td>\n",
" <td>4287444</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>7 rows × 26 columns</p>\n",
"</div>"
],
"text/plain": [
" CAMID X Image_name View \\\n",
"48538 E24 37559 E24_d.CR2 dorsal \n",
"37246 CAM042045 43973 CAM042045_v.JPG ventral \n",
"37484 CAM042166 44211 CAM042166_v.JPG ventral \n",
"48780 E83 37777 E83_v.CR2 ventral \n",
"3118 19N2627 22498 19N2627_v.CR2 NaN \n",
"46111 CAM045060 42806 CAM045060_v.CR2 ventral \n",
"39502 CAM043576 31097 CAM043576_v.CR2 ventral \n",
"\n",
" zenodo_name zenodo_link \\\n",
"48538 Anniina.Matilla.Field.Caught.E.csv https://zenodo.org/record/2554218 \n",
"37246 Collection_August2019.csv https://zenodo.org/record/5731587 \n",
"37484 Collection_August2019.csv https://zenodo.org/record/5731587 \n",
"48780 Anniina.Matilla.Field.Caught.E.csv https://zenodo.org/record/2554218 \n",
"3118 0.sheffield.ps.nn.ikiam.batch2.csv https://zenodo.org/record/4288311 \n",
"46111 image.names.cook.island.erato.csv https://zenodo.org/record/5526257 \n",
"39502 batch2.Peru.image.names.Zenodo.csv https://zenodo.org/record/4287444 \n",
"\n",
" Sequence Taxonomic_Name Locality Sample_accession ... Death_Date \\\n",
"48538 NaN NaN NaN NaN ... NaN \n",
"37246 42,045 NaN NaN NaN ... NaN \n",
"37484 42,166 NaN NaN NaN ... NaN \n",
"48780 NaN NaN NaN NaN ... NaN \n",
"3118 0 NaN NaN NaN ... NaN \n",
"46111 45,060 NaN NaN NaN ... NaN \n",
"39502 43,576 NaN NaN NaN ... NaN \n",
"\n",
" Cross_Type Stage Sex Unit_Type file_type record_number species \\\n",
"48538 NaN NaN NaN NaN raw 2554218 NaN \n",
"37246 NaN NaN NaN NaN jpg 5731587 NaN \n",
"37484 NaN NaN NaN NaN jpg 5731587 NaN \n",
"48780 NaN NaN NaN NaN raw 2554218 NaN \n",
"3118 NaN NaN NaN NaN raw 4288311 NaN \n",
"46111 NaN NaN NaN NaN raw 5526257 NaN \n",
"39502 NaN NaN NaN NaN raw 4287444 NaN \n",
"\n",
" subspecies genus \n",
"48538 None NaN \n",
"37246 None NaN \n",
"37484 None NaN \n",
"48780 None NaN \n",
"3118 None NaN \n",
"46111 None NaN \n",
"39502 None NaN \n",
"\n",
"[7 rows x 26 columns]"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.loc[df.species.isna()].sample(7)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Update Master File with Genus through Subspecies Columns"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"df.to_csv(\"../Jiggins_Zenodo_Img_Master.csv\", index = False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Make Heliconius Subset"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Index: 34929 entries, 6 to 49358\n",
"Data columns (total 26 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 CAMID 34929 non-null object\n",
" 1 X 34929 non-null int64 \n",
" 2 Image_name 34929 non-null object\n",
" 3 View 34150 non-null object\n",
" 4 zenodo_name 34929 non-null object\n",
" 5 zenodo_link 34929 non-null object\n",
" 6 Sequence 34929 non-null object\n",
" 7 Taxonomic_Name 34929 non-null object\n",
" 8 Locality 23417 non-null object\n",
" 9 Sample_accession 5860 non-null object\n",
" 10 Collected_by 5280 non-null object\n",
" 11 Other_ID 6404 non-null object\n",
" 12 Date 23162 non-null object\n",
" 13 Dataset 32846 non-null object\n",
" 14 Store 29446 non-null object\n",
" 15 Brood 14921 non-null object\n",
" 16 Death_Date 316 non-null object\n",
" 17 Cross_Type 5133 non-null object\n",
" 18 Stage 6 non-null object\n",
" 19 Sex 33880 non-null object\n",
" 20 Unit_Type 31975 non-null object\n",
" 21 file_type 34929 non-null object\n",
" 22 record_number 34929 non-null object\n",
" 23 species 34929 non-null object\n",
" 24 subspecies 24953 non-null object\n",
" 25 genus 34929 non-null object\n",
"dtypes: int64(1), object(25)\n",
"memory usage: 7.2+ MB\n"
]
}
],
"source": [
"heliconius_subset = df.loc[df.genus.str.lower() == \"heliconius\"]\n",
"\n",
"heliconius_subset.info()"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"CAMID 9546\n",
"X 34929\n",
"Image_name 26946\n",
"View 3\n",
"zenodo_name 31\n",
"zenodo_link 28\n",
"Sequence 8701\n",
"Taxonomic_Name 129\n",
"Locality 472\n",
"Sample_accession 1559\n",
"Collected_by 12\n",
"Other_ID 1865\n",
"Date 776\n",
"Dataset 8\n",
"Store 121\n",
"Brood 224\n",
"Death_Date 81\n",
"Cross_Type 30\n",
"Stage 1\n",
"Sex 3\n",
"Unit_Type 4\n",
"file_type 3\n",
"record_number 28\n",
"species 37\n",
"subspecies 110\n",
"genus 1\n",
"dtype: int64"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"heliconius_subset.nunique()"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"View\n",
"dorsal 17218\n",
"ventral 16914\n",
"dorsal and ventral 18\n",
"Name: count, dtype: int64"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"heliconius_subset.View.value_counts()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that this subset is distributed across 28 Zenodo records from the [Butterfly Genetics Group](https://zenodo.org/communities/butterfly?q=&l=list&p=1&s=10&sort=newest)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Save the Heliconius Subset to CSV\n",
"We'll drop the `genus` column, since they're all `Heliconius`."
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"heliconius_subset[list(heliconius_subset.columns)[:-1]].to_csv(\"../Jiggins_Heliconius_Master.csv\", index = False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "std",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|