File size: 60,990 Bytes
6ef14cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import numpy as np"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'pandas.core.frame.DataFrame'>\n",
      "RangeIndex: 5683 entries, 0 to 5682\n",
      "Data columns (total 4 columns):\n",
      " #   Column      Non-Null Count  Dtype  \n",
      "---  ------      --------------  -----  \n",
      " 0   coreid      5683 non-null   object \n",
      " 1   type        0 non-null      float64\n",
      " 2   identifier  5683 non-null   object \n",
      " 3   license     0 non-null      float64\n",
      "dtypes: float64(2), object(2)\n",
      "memory usage: 177.7+ KB\n"
     ]
    }
   ],
   "source": [
    "multimedia = pd.read_csv(\"../metadata/deduplication/Zenodo_meta_files/multimedia__(rec_3477891).csv\", low_memory=False)\n",
    "multimedia.info(show_counts=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>coreid</th>\n",
       "      <th>type</th>\n",
       "      <th>identifier</th>\n",
       "      <th>license</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>275ad2e7-bc7e-4e74-832e-869825f5bf0b</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2684906/files/CAM008...</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>cf02ac3a-6204-417c-b342-6f84eab48931</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2714333/files/CAM041...</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>7be80267-dbe9-4f4b-8f73-c7355447d5e1</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2686762/files/CAM008...</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>b97011cb-c4fd-4ea9-8828-dc920c7b900a</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2684906/files/CAM008...</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>6375bf74-3333-4cb6-a0dc-f95c3794edae</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2714333/files/CAM040...</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                 coreid  type  \\\n",
       "0  275ad2e7-bc7e-4e74-832e-869825f5bf0b   NaN   \n",
       "1  cf02ac3a-6204-417c-b342-6f84eab48931   NaN   \n",
       "2  7be80267-dbe9-4f4b-8f73-c7355447d5e1   NaN   \n",
       "3  b97011cb-c4fd-4ea9-8828-dc920c7b900a   NaN   \n",
       "4  6375bf74-3333-4cb6-a0dc-f95c3794edae   NaN   \n",
       "\n",
       "                                          identifier  license  \n",
       "0  https://zenodo.org/record/2684906/files/CAM008...      NaN  \n",
       "1  https://zenodo.org/record/2714333/files/CAM041...      NaN  \n",
       "2  https://zenodo.org/record/2686762/files/CAM008...      NaN  \n",
       "3  https://zenodo.org/record/2684906/files/CAM008...      NaN  \n",
       "4  https://zenodo.org/record/2714333/files/CAM040...      NaN  "
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "multimedia.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'https://zenodo.org/record/2684906/files/CAM008538_d.JPG'"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "multimedia.identifier[0]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's get a filename and record number recorded. Would like to add a `zenodo_link` column to see how that matches up to the master file as well. David said these were mostly resolution for records from [3477891](https://zenodo.org/records/3477891) (where these files are from) at download.\n",
    "\n",
    "`identifier` is non-null for all entries, but there is one non-Zenodo link."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>coreid</th>\n",
       "      <th>type</th>\n",
       "      <th>identifier</th>\n",
       "      <th>license</th>\n",
       "      <th>zenodo_link</th>\n",
       "      <th>Image_name</th>\n",
       "      <th>record_number</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>275ad2e7-bc7e-4e74-832e-869825f5bf0b</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2684906/files/CAM008...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2684906</td>\n",
       "      <td>CAM008538_d.JPG</td>\n",
       "      <td>2684906</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>cf02ac3a-6204-417c-b342-6f84eab48931</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2714333/files/CAM041...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2714333</td>\n",
       "      <td>CAM041048_v.JPG</td>\n",
       "      <td>2714333</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>7be80267-dbe9-4f4b-8f73-c7355447d5e1</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2686762/files/CAM008...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2686762</td>\n",
       "      <td>CAM008842_d.JPG</td>\n",
       "      <td>2686762</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>b97011cb-c4fd-4ea9-8828-dc920c7b900a</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2684906/files/CAM008...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2684906</td>\n",
       "      <td>CAM008539_v.JPG</td>\n",
       "      <td>2684906</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>6375bf74-3333-4cb6-a0dc-f95c3794edae</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2714333/files/CAM040...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2714333</td>\n",
       "      <td>CAM040771_v.JPG</td>\n",
       "      <td>2714333</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                 coreid  type  \\\n",
       "0  275ad2e7-bc7e-4e74-832e-869825f5bf0b   NaN   \n",
       "1  cf02ac3a-6204-417c-b342-6f84eab48931   NaN   \n",
       "2  7be80267-dbe9-4f4b-8f73-c7355447d5e1   NaN   \n",
       "3  b97011cb-c4fd-4ea9-8828-dc920c7b900a   NaN   \n",
       "4  6375bf74-3333-4cb6-a0dc-f95c3794edae   NaN   \n",
       "\n",
       "                                          identifier  license  \\\n",
       "0  https://zenodo.org/record/2684906/files/CAM008...      NaN   \n",
       "1  https://zenodo.org/record/2714333/files/CAM041...      NaN   \n",
       "2  https://zenodo.org/record/2686762/files/CAM008...      NaN   \n",
       "3  https://zenodo.org/record/2684906/files/CAM008...      NaN   \n",
       "4  https://zenodo.org/record/2714333/files/CAM040...      NaN   \n",
       "\n",
       "                         zenodo_link       Image_name record_number  \n",
       "0  https://zenodo.org/record/2684906  CAM008538_d.JPG       2684906  \n",
       "1  https://zenodo.org/record/2714333  CAM041048_v.JPG       2714333  \n",
       "2  https://zenodo.org/record/2686762  CAM008842_d.JPG       2686762  \n",
       "3  https://zenodo.org/record/2684906  CAM008539_v.JPG       2684906  \n",
       "4  https://zenodo.org/record/2714333  CAM040771_v.JPG       2714333  "
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def get_link_filename(identifier):\n",
    "    if \"zenodo\" not in identifier:\n",
    "        link_list = identifier.split(\"com/\")\n",
    "        link_list[0] = np.nan\n",
    "    else:\n",
    "        link_list = identifier.split(\"/files/\")\n",
    "    # link is first part, filename at end\n",
    "    return pd.Series(link_list)\n",
    "\n",
    "def get_record_number(zenodo_link):\n",
    "    if type(zenodo_link) != float:\n",
    "        link = zenodo_link.split(\"record/\")\n",
    "        return link[1]\n",
    "\n",
    "multimedia[[\"zenodo_link\", \"Image_name\"]] = multimedia[\"identifier\"].apply(get_link_filename)\n",
    "multimedia[\"record_number\"] = multimedia[\"zenodo_link\"].apply(get_record_number)\n",
    "multimedia.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "http://earthcape-heliconius.s3-eu-west-1.amazonaws.com/F1FD2804C9E643798A7C1B0D9FBDE4AB.JPG\n"
     ]
    }
   ],
   "source": [
    "for link in list(multimedia.identifier):\n",
    "    if \"zenodo\" not in link:\n",
    "        print(link)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "So there is one image that does not have a Zenodo link."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'pandas.core.frame.DataFrame'>\n",
      "RangeIndex: 5683 entries, 0 to 5682\n",
      "Data columns (total 7 columns):\n",
      " #   Column         Non-Null Count  Dtype  \n",
      "---  ------         --------------  -----  \n",
      " 0   coreid         5683 non-null   object \n",
      " 1   type           0 non-null      float64\n",
      " 2   identifier     5683 non-null   object \n",
      " 3   license        0 non-null      float64\n",
      " 4   zenodo_link    5682 non-null   object \n",
      " 5   Image_name     5683 non-null   object \n",
      " 6   record_number  5682 non-null   object \n",
      "dtypes: float64(2), object(5)\n",
      "memory usage: 310.9+ KB\n"
     ]
    }
   ],
   "source": [
    "multimedia.info()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "coreid           2794\n",
       "type                0\n",
       "identifier       5683\n",
       "license             0\n",
       "zenodo_link        12\n",
       "Image_name       5683\n",
       "record_number      12\n",
       "dtype: int64"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "multimedia.nunique()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `coreid` is repeated, but the `Image_name` is unique across entries, so this could (hopefully) connect us to the source images."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "record_number\n",
       "2707828    1276\n",
       "2714333    1113\n",
       "2686762     986\n",
       "2684906     863\n",
       "2677821     703\n",
       "2702457     276\n",
       "2682458     158\n",
       "2682669     124\n",
       "2552371      91\n",
       "2550097      50\n",
       "2553977      22\n",
       "2813153      20\n",
       "Name: count, dtype: int64"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "multimedia.record_number.value_counts()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Interesting, it would seem that record 3477891 is a collection of these 12 other records. It matches with this [GBIF Collection](https://www.gbif.org/dataset/34f8683a-dfc0-46b8-acf6-390fe5ca6b92) that is the \"collection records from the research group of Chris Jiggins at the University of Cambridge derived from almost 20 years of field studies. Many records include images as well as locality data.\" released in October 2019."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'pandas.core.frame.DataFrame'>\n",
      "RangeIndex: 4372 entries, 0 to 4371\n",
      "Data columns (total 29 columns):\n",
      " #   Column                         Non-Null Count  Dtype  \n",
      "---  ------                         --------------  -----  \n",
      " 0   id                             4372 non-null   object \n",
      " 1   occurrenceID                   4372 non-null   object \n",
      " 2   catalogNumber                  4372 non-null   object \n",
      " 3   datasetName                    4372 non-null   object \n",
      " 4   recordNumber                   0 non-null      float64\n",
      " 5   otherCatalogNumbers            33 non-null     object \n",
      " 6   basisOfRecord                  4372 non-null   object \n",
      " 7   eventDate                      3806 non-null   object \n",
      " 8   locality                       4372 non-null   object \n",
      " 9   country                        4372 non-null   object \n",
      " 10  decimalLatitude                4372 non-null   float64\n",
      " 11  decimalLongitude               4372 non-null   float64\n",
      " 12  geodeticDatum                  4372 non-null   int64  \n",
      " 13  year                           3806 non-null   float64\n",
      " 14  sex                            3882 non-null   object \n",
      " 15  lifeStage                      39 non-null     object \n",
      " 16  recordedBy                     0 non-null      float64\n",
      " 17  individualCount                4372 non-null   int64  \n",
      " 18  taxonId                        1105 non-null   float64\n",
      " 19  scientificName                 4360 non-null   object \n",
      " 20  scientificNameAuthorship       0 non-null      float64\n",
      " 21  taxonRank                      4358 non-null   object \n",
      " 22  genus                          4358 non-null   object \n",
      " 23  family                         4086 non-null   object \n",
      " 24  order                          4086 non-null   object \n",
      " 25  class                          4086 non-null   object \n",
      " 26  kingdom                        4086 non-null   object \n",
      " 27  coordinateUncertaintyInMeters  0 non-null      float64\n",
      " 28  dynamicProperties              4372 non-null   object \n",
      "dtypes: float64(8), int64(2), object(19)\n",
      "memory usage: 990.7+ KB\n"
     ]
    }
   ],
   "source": [
    "occurrence = pd.read_csv(\"../metadata/deduplication/Zenodo_meta_files/occurrences__(rec_3477891).csv\",low_memory=False)\n",
    "occurrence.info(show_counts=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "id               4372\n",
       "occurrenceID     4372\n",
       "catalogNumber    4372\n",
       "datasetName         1\n",
       "dtype: int64"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "occurrence[(occurrence.columns)[:4]].nunique()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Are `id` and `occurrenceID` all equal?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(4372, 29)"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "occurrence.loc[occurrence[\"id\"] == occurrence[\"occurrenceID\"]].shape"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This has a record number column, but there are no non-null values, so we'll try to fill that in. Except there is nothing to use to fill it in...we have to connect on `catalogNumber` to the `id` to the `coreid`, but `catalogNumber` is just the CAMID and we have more unique IDs than there are in the multimedia file..."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>id</th>\n",
       "      <th>occurrenceID</th>\n",
       "      <th>catalogNumber</th>\n",
       "      <th>datasetName</th>\n",
       "      <th>recordNumber</th>\n",
       "      <th>otherCatalogNumbers</th>\n",
       "      <th>basisOfRecord</th>\n",
       "      <th>eventDate</th>\n",
       "      <th>locality</th>\n",
       "      <th>country</th>\n",
       "      <th>...</th>\n",
       "      <th>scientificName</th>\n",
       "      <th>scientificNameAuthorship</th>\n",
       "      <th>taxonRank</th>\n",
       "      <th>genus</th>\n",
       "      <th>family</th>\n",
       "      <th>order</th>\n",
       "      <th>class</th>\n",
       "      <th>kingdom</th>\n",
       "      <th>coordinateUncertaintyInMeters</th>\n",
       "      <th>dynamicProperties</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>00075b7f-3920-4987-a3e4-e98568a38558</td>\n",
       "      <td>00075b7f-3920-4987-a3e4-e98568a38558</td>\n",
       "      <td>CAM040599</td>\n",
       "      <td>Heliconiine Butterfly Collection Records from ...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>PreservedSpecimen</td>\n",
       "      <td>2017-03-07</td>\n",
       "      <td>Mashpi to Pachijal 2</td>\n",
       "      <td>Ecuador</td>\n",
       "      <td>...</td>\n",
       "      <td>Heliconius cydno ssp. alithea</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Subspecies</td>\n",
       "      <td>Heliconius</td>\n",
       "      <td>Nymphalidae</td>\n",
       "      <td>Lepidoptera</td>\n",
       "      <td>Insecta</td>\n",
       "      <td>Animalia</td>\n",
       "      <td>NaN</td>\n",
       "      <td>{}</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>000dc8ca-5d60-4aff-9823-33d20d52c7cd</td>\n",
       "      <td>000dc8ca-5d60-4aff-9823-33d20d52c7cd</td>\n",
       "      <td>CAM040277</td>\n",
       "      <td>Heliconiine Butterfly Collection Records from ...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>PreservedSpecimen</td>\n",
       "      <td>2017-01-30</td>\n",
       "      <td>Km 119 Baeza - Lago Agrio</td>\n",
       "      <td>Ecuador</td>\n",
       "      <td>...</td>\n",
       "      <td>Actinote sp.</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Species</td>\n",
       "      <td>Actinote</td>\n",
       "      <td>Nymphalidae</td>\n",
       "      <td>Lepidoptera</td>\n",
       "      <td>Insecta</td>\n",
       "      <td>Animalia</td>\n",
       "      <td>NaN</td>\n",
       "      <td>{}</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>001b4619-bfe3-4a89-9709-45a70c1fa380</td>\n",
       "      <td>001b4619-bfe3-4a89-9709-45a70c1fa380</td>\n",
       "      <td>CAM120368</td>\n",
       "      <td>Heliconiine Butterfly Collection Records from ...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>PreservedSpecimen</td>\n",
       "      <td>2005-11-15</td>\n",
       "      <td>Anangu Boca del Rio ECD OR</td>\n",
       "      <td>Ecuador</td>\n",
       "      <td>...</td>\n",
       "      <td>Pseudoscada timna ssp. utilla</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Subspecies</td>\n",
       "      <td>Pseudoscada</td>\n",
       "      <td>Nymphalidae</td>\n",
       "      <td>Lepidoptera</td>\n",
       "      <td>Insecta</td>\n",
       "      <td>Animalia</td>\n",
       "      <td>NaN</td>\n",
       "      <td>{}</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>0021e86f-64b3-4ce8-b872-f783f00f5f6a</td>\n",
       "      <td>0021e86f-64b3-4ce8-b872-f783f00f5f6a</td>\n",
       "      <td>CAM014638</td>\n",
       "      <td>Heliconiine Butterfly Collection Records from ...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>PreservedSpecimen</td>\n",
       "      <td>2009-11-23</td>\n",
       "      <td>Puerta Lara</td>\n",
       "      <td>Panamá</td>\n",
       "      <td>...</td>\n",
       "      <td>Heliconius melpomene ssp. melpomene</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Subspecies</td>\n",
       "      <td>Heliconius</td>\n",
       "      <td>Nymphalidae</td>\n",
       "      <td>Lepidoptera</td>\n",
       "      <td>Insecta</td>\n",
       "      <td>Animalia</td>\n",
       "      <td>NaN</td>\n",
       "      <td>{}</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>0034a857-9ed6-45be-b437-8e20eef541bb</td>\n",
       "      <td>0034a857-9ed6-45be-b437-8e20eef541bb</td>\n",
       "      <td>CAM008071</td>\n",
       "      <td>Heliconiine Butterfly Collection Records from ...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>PreservedSpecimen</td>\n",
       "      <td>2000-12-17</td>\n",
       "      <td>Gamboa #183</td>\n",
       "      <td>Panamá</td>\n",
       "      <td>...</td>\n",
       "      <td>Anthanassa drusilla</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Species</td>\n",
       "      <td>Anthanassa</td>\n",
       "      <td>Nymphalidae</td>\n",
       "      <td>Lepidoptera</td>\n",
       "      <td>Insecta</td>\n",
       "      <td>Animalia</td>\n",
       "      <td>NaN</td>\n",
       "      <td>{}</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>5 rows × 29 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "                                     id                          occurrenceID  \\\n",
       "0  00075b7f-3920-4987-a3e4-e98568a38558  00075b7f-3920-4987-a3e4-e98568a38558   \n",
       "1  000dc8ca-5d60-4aff-9823-33d20d52c7cd  000dc8ca-5d60-4aff-9823-33d20d52c7cd   \n",
       "2  001b4619-bfe3-4a89-9709-45a70c1fa380  001b4619-bfe3-4a89-9709-45a70c1fa380   \n",
       "3  0021e86f-64b3-4ce8-b872-f783f00f5f6a  0021e86f-64b3-4ce8-b872-f783f00f5f6a   \n",
       "4  0034a857-9ed6-45be-b437-8e20eef541bb  0034a857-9ed6-45be-b437-8e20eef541bb   \n",
       "\n",
       "  catalogNumber                                        datasetName  \\\n",
       "0     CAM040599  Heliconiine Butterfly Collection Records from ...   \n",
       "1     CAM040277  Heliconiine Butterfly Collection Records from ...   \n",
       "2     CAM120368  Heliconiine Butterfly Collection Records from ...   \n",
       "3     CAM014638  Heliconiine Butterfly Collection Records from ...   \n",
       "4     CAM008071  Heliconiine Butterfly Collection Records from ...   \n",
       "\n",
       "   recordNumber otherCatalogNumbers      basisOfRecord   eventDate  \\\n",
       "0           NaN                 NaN  PreservedSpecimen  2017-03-07   \n",
       "1           NaN                 NaN  PreservedSpecimen  2017-01-30   \n",
       "2           NaN                 NaN  PreservedSpecimen  2005-11-15   \n",
       "3           NaN                 NaN  PreservedSpecimen  2009-11-23   \n",
       "4           NaN                 NaN  PreservedSpecimen  2000-12-17   \n",
       "\n",
       "                     locality  country  ...  \\\n",
       "0        Mashpi to Pachijal 2  Ecuador  ...   \n",
       "1   Km 119 Baeza - Lago Agrio  Ecuador  ...   \n",
       "2  Anangu Boca del Rio ECD OR  Ecuador  ...   \n",
       "3                 Puerta Lara   Panamá  ...   \n",
       "4                 Gamboa #183   Panamá  ...   \n",
       "\n",
       "                        scientificName  scientificNameAuthorship   taxonRank  \\\n",
       "0        Heliconius cydno ssp. alithea                       NaN  Subspecies   \n",
       "1                         Actinote sp.                       NaN     Species   \n",
       "2        Pseudoscada timna ssp. utilla                       NaN  Subspecies   \n",
       "3  Heliconius melpomene ssp. melpomene                       NaN  Subspecies   \n",
       "4                  Anthanassa drusilla                       NaN     Species   \n",
       "\n",
       "         genus       family        order    class   kingdom  \\\n",
       "0   Heliconius  Nymphalidae  Lepidoptera  Insecta  Animalia   \n",
       "1     Actinote  Nymphalidae  Lepidoptera  Insecta  Animalia   \n",
       "2  Pseudoscada  Nymphalidae  Lepidoptera  Insecta  Animalia   \n",
       "3   Heliconius  Nymphalidae  Lepidoptera  Insecta  Animalia   \n",
       "4   Anthanassa  Nymphalidae  Lepidoptera  Insecta  Animalia   \n",
       "\n",
       "   coordinateUncertaintyInMeters dynamicProperties  \n",
       "0                            NaN                {}  \n",
       "1                            NaN                {}  \n",
       "2                            NaN                {}  \n",
       "3                            NaN                {}  \n",
       "4                            NaN                {}  \n",
       "\n",
       "[5 rows x 29 columns]"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "occurrence.head()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "How many unique CAMIDs do we have in `multimedia`?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "2802"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def get_camid(image_name):\n",
    "    if \"_\" in image_name:\n",
    "        return image_name.split(\"_\")[0]\n",
    "    else:\n",
    "        # We have at least one record with image name that doesn't have CAMID (the non-zenodo record)\n",
    "        return np.nan\n",
    "\n",
    "multimedia[\"CAMID\"] = multimedia[\"Image_name\"].apply(get_camid)\n",
    "multimedia[\"CAMID\"].nunique()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Okay, so there are more unique `CAMID`s than there are unique `coreid`s, but less than there are unique CAMIDs (`catalogNumber`) in `occurrence`...\n",
    "\n",
    "What do I get if I merge these on `CAMID` and `coreid`?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'pandas.core.frame.DataFrame'>\n",
      "RangeIndex: 5407 entries, 0 to 5406\n",
      "Data columns (total 37 columns):\n",
      " #   Column                         Non-Null Count  Dtype  \n",
      "---  ------                         --------------  -----  \n",
      " 0   coreid                         5407 non-null   object \n",
      " 1   type                           0 non-null      float64\n",
      " 2   identifier                     5407 non-null   object \n",
      " 3   license                        0 non-null      float64\n",
      " 4   zenodo_link                    5407 non-null   object \n",
      " 5   Image_name                     5407 non-null   object \n",
      " 6   record_number                  5407 non-null   object \n",
      " 7   CAMID                          5407 non-null   object \n",
      " 8   id                             5407 non-null   object \n",
      " 9   occurrenceID                   5407 non-null   object \n",
      " 10  catalogNumber                  5407 non-null   object \n",
      " 11  datasetName                    5407 non-null   object \n",
      " 12  recordNumber                   0 non-null      float64\n",
      " 13  otherCatalogNumbers            0 non-null      object \n",
      " 14  basisOfRecord                  5407 non-null   object \n",
      " 15  eventDate                      4937 non-null   object \n",
      " 16  locality                       5407 non-null   object \n",
      " 17  country                        5407 non-null   object \n",
      " 18  decimalLatitude                5407 non-null   float64\n",
      " 19  decimalLongitude               5407 non-null   float64\n",
      " 20  geodeticDatum                  5407 non-null   int64  \n",
      " 21  year                           4937 non-null   float64\n",
      " 22  sex                            5307 non-null   object \n",
      " 23  lifeStage                      0 non-null      object \n",
      " 24  recordedBy                     0 non-null      float64\n",
      " 25  individualCount                5407 non-null   int64  \n",
      " 26  taxonId                        1473 non-null   float64\n",
      " 27  scientificName                 5389 non-null   object \n",
      " 28  scientificNameAuthorship       0 non-null      float64\n",
      " 29  taxonRank                      5387 non-null   object \n",
      " 30  genus                          5387 non-null   object \n",
      " 31  family                         5211 non-null   object \n",
      " 32  order                          5211 non-null   object \n",
      " 33  class                          5211 non-null   object \n",
      " 34  kingdom                        5211 non-null   object \n",
      " 35  coordinateUncertaintyInMeters  0 non-null      float64\n",
      " 36  dynamicProperties              5407 non-null   object \n",
      "dtypes: float64(10), int64(2), object(25)\n",
      "memory usage: 1.5+ MB\n"
     ]
    }
   ],
   "source": [
    "test_merge = pd.merge(multimedia,\n",
    "                      occurrence,\n",
    "                      left_on = [\"coreid\", \"CAMID\"],\n",
    "                      right_on = [\"id\", \"catalogNumber\"],\n",
    "                      how = \"inner\")\n",
    "test_merge.info(show_counts=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "So there are about 270 images listed in `multimedia` that are unaccounted for in `occurences`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>coreid</th>\n",
       "      <th>type</th>\n",
       "      <th>identifier</th>\n",
       "      <th>license</th>\n",
       "      <th>zenodo_link</th>\n",
       "      <th>Image_name</th>\n",
       "      <th>record_number</th>\n",
       "      <th>CAMID</th>\n",
       "      <th>id</th>\n",
       "      <th>occurrenceID</th>\n",
       "      <th>catalogNumber</th>\n",
       "      <th>datasetName</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>275ad2e7-bc7e-4e74-832e-869825f5bf0b</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2684906/files/CAM008...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2684906</td>\n",
       "      <td>CAM008538_d.JPG</td>\n",
       "      <td>2684906</td>\n",
       "      <td>CAM008538</td>\n",
       "      <td>275ad2e7-bc7e-4e74-832e-869825f5bf0b</td>\n",
       "      <td>275ad2e7-bc7e-4e74-832e-869825f5bf0b</td>\n",
       "      <td>CAM008538</td>\n",
       "      <td>Heliconiine Butterfly Collection Records from ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>275ad2e7-bc7e-4e74-832e-869825f5bf0b</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2684906/files/CAM008...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2684906</td>\n",
       "      <td>CAM008538_v.JPG</td>\n",
       "      <td>2684906</td>\n",
       "      <td>CAM008538</td>\n",
       "      <td>275ad2e7-bc7e-4e74-832e-869825f5bf0b</td>\n",
       "      <td>275ad2e7-bc7e-4e74-832e-869825f5bf0b</td>\n",
       "      <td>CAM008538</td>\n",
       "      <td>Heliconiine Butterfly Collection Records from ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>cf02ac3a-6204-417c-b342-6f84eab48931</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2714333/files/CAM041...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2714333</td>\n",
       "      <td>CAM041048_v.JPG</td>\n",
       "      <td>2714333</td>\n",
       "      <td>CAM041048</td>\n",
       "      <td>cf02ac3a-6204-417c-b342-6f84eab48931</td>\n",
       "      <td>cf02ac3a-6204-417c-b342-6f84eab48931</td>\n",
       "      <td>CAM041048</td>\n",
       "      <td>Heliconiine Butterfly Collection Records from ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>cf02ac3a-6204-417c-b342-6f84eab48931</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2714333/files/CAM041...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2714333</td>\n",
       "      <td>CAM041048_d.JPG</td>\n",
       "      <td>2714333</td>\n",
       "      <td>CAM041048</td>\n",
       "      <td>cf02ac3a-6204-417c-b342-6f84eab48931</td>\n",
       "      <td>cf02ac3a-6204-417c-b342-6f84eab48931</td>\n",
       "      <td>CAM041048</td>\n",
       "      <td>Heliconiine Butterfly Collection Records from ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>7be80267-dbe9-4f4b-8f73-c7355447d5e1</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2686762/files/CAM008...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://zenodo.org/record/2686762</td>\n",
       "      <td>CAM008842_d.JPG</td>\n",
       "      <td>2686762</td>\n",
       "      <td>CAM008842</td>\n",
       "      <td>7be80267-dbe9-4f4b-8f73-c7355447d5e1</td>\n",
       "      <td>7be80267-dbe9-4f4b-8f73-c7355447d5e1</td>\n",
       "      <td>CAM008842</td>\n",
       "      <td>Heliconiine Butterfly Collection Records from ...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                 coreid  type  \\\n",
       "0  275ad2e7-bc7e-4e74-832e-869825f5bf0b   NaN   \n",
       "1  275ad2e7-bc7e-4e74-832e-869825f5bf0b   NaN   \n",
       "2  cf02ac3a-6204-417c-b342-6f84eab48931   NaN   \n",
       "3  cf02ac3a-6204-417c-b342-6f84eab48931   NaN   \n",
       "4  7be80267-dbe9-4f4b-8f73-c7355447d5e1   NaN   \n",
       "\n",
       "                                          identifier  license  \\\n",
       "0  https://zenodo.org/record/2684906/files/CAM008...      NaN   \n",
       "1  https://zenodo.org/record/2684906/files/CAM008...      NaN   \n",
       "2  https://zenodo.org/record/2714333/files/CAM041...      NaN   \n",
       "3  https://zenodo.org/record/2714333/files/CAM041...      NaN   \n",
       "4  https://zenodo.org/record/2686762/files/CAM008...      NaN   \n",
       "\n",
       "                         zenodo_link       Image_name record_number  \\\n",
       "0  https://zenodo.org/record/2684906  CAM008538_d.JPG       2684906   \n",
       "1  https://zenodo.org/record/2684906  CAM008538_v.JPG       2684906   \n",
       "2  https://zenodo.org/record/2714333  CAM041048_v.JPG       2714333   \n",
       "3  https://zenodo.org/record/2714333  CAM041048_d.JPG       2714333   \n",
       "4  https://zenodo.org/record/2686762  CAM008842_d.JPG       2686762   \n",
       "\n",
       "       CAMID                                    id  \\\n",
       "0  CAM008538  275ad2e7-bc7e-4e74-832e-869825f5bf0b   \n",
       "1  CAM008538  275ad2e7-bc7e-4e74-832e-869825f5bf0b   \n",
       "2  CAM041048  cf02ac3a-6204-417c-b342-6f84eab48931   \n",
       "3  CAM041048  cf02ac3a-6204-417c-b342-6f84eab48931   \n",
       "4  CAM008842  7be80267-dbe9-4f4b-8f73-c7355447d5e1   \n",
       "\n",
       "                           occurrenceID catalogNumber  \\\n",
       "0  275ad2e7-bc7e-4e74-832e-869825f5bf0b     CAM008538   \n",
       "1  275ad2e7-bc7e-4e74-832e-869825f5bf0b     CAM008538   \n",
       "2  cf02ac3a-6204-417c-b342-6f84eab48931     CAM041048   \n",
       "3  cf02ac3a-6204-417c-b342-6f84eab48931     CAM041048   \n",
       "4  7be80267-dbe9-4f4b-8f73-c7355447d5e1     CAM008842   \n",
       "\n",
       "                                         datasetName  \n",
       "0  Heliconiine Butterfly Collection Records from ...  \n",
       "1  Heliconiine Butterfly Collection Records from ...  \n",
       "2  Heliconiine Butterfly Collection Records from ...  \n",
       "3  Heliconiine Butterfly Collection Records from ...  \n",
       "4  Heliconiine Butterfly Collection Records from ...  "
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "test_merge[list(test_merge.columns)[:12]].head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "coreid           2713\n",
       "CAMID            2713\n",
       "identifier       5407\n",
       "record_number      10\n",
       "dtype: int64"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "test_merge[[\"coreid\", \"CAMID\", \"identifier\", \"record_number\"]].nunique()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Uniqueness counts from `multimedia`:\n",
    "```\n",
    "CAMID            2802\n",
    "coreid           2794\n",
    "identifier       5683\n",
    "Image_name       5683\n",
    "record_number      12\n",
    "```\n",
    "It seems there are 2 records that don't match on IDs, which is a loss of 81 unique listings in `multimedia`.\n",
    "\n",
    "How will this compare to the entries from record 3477891 in our master file? Also, are these other records in there?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'pandas.core.frame.DataFrame'>\n",
      "Index: 5501 entries, 3235 to 42852\n",
      "Data columns (total 28 columns):\n",
      " #   Column            Non-Null Count  Dtype \n",
      "---  ------            --------------  ----- \n",
      " 0   CAMID             5501 non-null   object\n",
      " 1   X                 5501 non-null   int64 \n",
      " 2   Image_name        5501 non-null   object\n",
      " 3   View              5501 non-null   object\n",
      " 4   zenodo_name       5501 non-null   object\n",
      " 5   zenodo_link       5501 non-null   object\n",
      " 6   Sequence          5501 non-null   object\n",
      " 7   Taxonomic_Name    5501 non-null   object\n",
      " 8   Locality          5501 non-null   object\n",
      " 9   Sample_accession  925 non-null    object\n",
      " 10  Collected_by      0 non-null      object\n",
      " 11  Other_ID          12 non-null     object\n",
      " 12  Date              5025 non-null   object\n",
      " 13  Dataset           5501 non-null   object\n",
      " 14  Store             5421 non-null   object\n",
      " 15  Brood             4 non-null      object\n",
      " 16  Death_Date        0 non-null      object\n",
      " 17  Cross_Type        0 non-null      object\n",
      " 18  Stage             0 non-null      object\n",
      " 19  Sex               5435 non-null   object\n",
      " 20  Unit_Type         5501 non-null   object\n",
      " 21  file_type         5501 non-null   object\n",
      " 22  record_number     5501 non-null   int64 \n",
      " 23  species           5501 non-null   object\n",
      " 24  subspecies        3673 non-null   object\n",
      " 25  genus             5501 non-null   object\n",
      " 26  file_url          5501 non-null   object\n",
      " 27  hybrid_stat       3705 non-null   object\n",
      "dtypes: int64(2), object(26)\n",
      "memory usage: 1.2+ MB\n"
     ]
    }
   ],
   "source": [
    "df = pd.read_csv(\"../Jiggins_Zenodo_Img_Master.csv\", low_memory = False)\n",
    "\n",
    "odd_record = df.loc[df[\"record_number\"] == 3477891]\n",
    "odd_record.info()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "id_cols = [\"CAMID\", \"X\", \"Image_name\", \"zenodo_name\", \"zenodo_link\", \"file_url\", \"Dataset\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "CAMID          2704\n",
       "X              5501\n",
       "Image_name     5497\n",
       "zenodo_name       1\n",
       "zenodo_link       1\n",
       "file_url       5497\n",
       "Dataset           1\n",
       "dtype: int64"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "odd_record[id_cols].nunique()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This falls somewhere between the `multimedia` & `occurrence` merge, and the `multimedia` file. Let's see a sample of these images then try aligning it with `multimedia` on `Image_name`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>CAMID</th>\n",
       "      <th>X</th>\n",
       "      <th>Image_name</th>\n",
       "      <th>zenodo_name</th>\n",
       "      <th>zenodo_link</th>\n",
       "      <th>file_url</th>\n",
       "      <th>Dataset</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>3235</th>\n",
       "      <td>CAM000001</td>\n",
       "      <td>44387</td>\n",
       "      <td>CAM000001_v.JPG</td>\n",
       "      <td>occurences_and_multimedia.csv</td>\n",
       "      <td>https://zenodo.org/record/3477891</td>\n",
       "      <td>https://zenodo.org/record/3477891/files/CAM000...</td>\n",
       "      <td>Heliconiine Butterfly Collection Records from ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3236</th>\n",
       "      <td>CAM000001</td>\n",
       "      <td>44386</td>\n",
       "      <td>CAM000001_d.JPG</td>\n",
       "      <td>occurences_and_multimedia.csv</td>\n",
       "      <td>https://zenodo.org/record/3477891</td>\n",
       "      <td>https://zenodo.org/record/3477891/files/CAM000...</td>\n",
       "      <td>Heliconiine Butterfly Collection Records from ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3237</th>\n",
       "      <td>CAM000003</td>\n",
       "      <td>44388</td>\n",
       "      <td>CAM000003_d.JPG</td>\n",
       "      <td>occurences_and_multimedia.csv</td>\n",
       "      <td>https://zenodo.org/record/3477891</td>\n",
       "      <td>https://zenodo.org/record/3477891/files/CAM000...</td>\n",
       "      <td>Heliconiine Butterfly Collection Records from ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3240</th>\n",
       "      <td>CAM000003</td>\n",
       "      <td>44389</td>\n",
       "      <td>CAM000003_v.JPG</td>\n",
       "      <td>occurences_and_multimedia.csv</td>\n",
       "      <td>https://zenodo.org/record/3477891</td>\n",
       "      <td>https://zenodo.org/record/3477891/files/CAM000...</td>\n",
       "      <td>Heliconiine Butterfly Collection Records from ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3242</th>\n",
       "      <td>CAM000004</td>\n",
       "      <td>44390</td>\n",
       "      <td>CAM000004_d.JPG</td>\n",
       "      <td>occurences_and_multimedia.csv</td>\n",
       "      <td>https://zenodo.org/record/3477891</td>\n",
       "      <td>https://zenodo.org/record/3477891/files/CAM000...</td>\n",
       "      <td>Heliconiine Butterfly Collection Records from ...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          CAMID      X       Image_name                    zenodo_name  \\\n",
       "3235  CAM000001  44387  CAM000001_v.JPG  occurences_and_multimedia.csv   \n",
       "3236  CAM000001  44386  CAM000001_d.JPG  occurences_and_multimedia.csv   \n",
       "3237  CAM000003  44388  CAM000003_d.JPG  occurences_and_multimedia.csv   \n",
       "3240  CAM000003  44389  CAM000003_v.JPG  occurences_and_multimedia.csv   \n",
       "3242  CAM000004  44390  CAM000004_d.JPG  occurences_and_multimedia.csv   \n",
       "\n",
       "                            zenodo_link  \\\n",
       "3235  https://zenodo.org/record/3477891   \n",
       "3236  https://zenodo.org/record/3477891   \n",
       "3237  https://zenodo.org/record/3477891   \n",
       "3240  https://zenodo.org/record/3477891   \n",
       "3242  https://zenodo.org/record/3477891   \n",
       "\n",
       "                                               file_url  \\\n",
       "3235  https://zenodo.org/record/3477891/files/CAM000...   \n",
       "3236  https://zenodo.org/record/3477891/files/CAM000...   \n",
       "3237  https://zenodo.org/record/3477891/files/CAM000...   \n",
       "3240  https://zenodo.org/record/3477891/files/CAM000...   \n",
       "3242  https://zenodo.org/record/3477891/files/CAM000...   \n",
       "\n",
       "                                                Dataset  \n",
       "3235  Heliconiine Butterfly Collection Records from ...  \n",
       "3236  Heliconiine Butterfly Collection Records from ...  \n",
       "3237  Heliconiine Butterfly Collection Records from ...  \n",
       "3240  Heliconiine Butterfly Collection Records from ...  \n",
       "3242  Heliconiine Butterfly Collection Records from ...  "
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "odd_record[id_cols].head()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "They are all labeled as that dataset with the `zenodo_name` \"occurrences_and_multimedia.csv\" because it was a combo of these used by Christopher to populate the CSV."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'pandas.core.frame.DataFrame'>\n",
      "RangeIndex: 5501 entries, 0 to 5500\n",
      "Data columns (total 14 columns):\n",
      " #   Column              Non-Null Count  Dtype  \n",
      "---  ------              --------------  -----  \n",
      " 0   CAMID_master        5501 non-null   object \n",
      " 1   X                   5501 non-null   int64  \n",
      " 2   Image_name          5501 non-null   object \n",
      " 3   zenodo_name         5501 non-null   object \n",
      " 4   zenodo_link_master  5501 non-null   object \n",
      " 5   file_url            5501 non-null   object \n",
      " 6   Dataset             5501 non-null   object \n",
      " 7   coreid              5501 non-null   object \n",
      " 8   type                0 non-null      float64\n",
      " 9   identifier          5501 non-null   object \n",
      " 10  license             0 non-null      float64\n",
      " 11  zenodo_link_media   5501 non-null   object \n",
      " 12  record_number       5501 non-null   object \n",
      " 13  CAMID_media         5409 non-null   object \n",
      "dtypes: float64(2), int64(1), object(11)\n",
      "memory usage: 601.8+ KB\n"
     ]
    }
   ],
   "source": [
    "odd_multimedia = pd.merge(odd_record[id_cols],\n",
    "                          multimedia,\n",
    "                          on = \"Image_name\",\n",
    "                          how = \"inner\",\n",
    "                          suffixes = (\"_master\", \"_media\"))\n",
    "odd_multimedia.info()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "CAMID_master          2704\n",
       "X                     5501\n",
       "Image_name            5497\n",
       "zenodo_name              1\n",
       "zenodo_link_master       1\n",
       "file_url              5497\n",
       "Dataset                  1\n",
       "coreid                2704\n",
       "type                     0\n",
       "identifier            5497\n",
       "license                  0\n",
       "zenodo_link_media       12\n",
       "record_number           12\n",
       "CAMID_media           2712\n",
       "dtype: int64"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "odd_multimedia.nunique()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Looks like all the images were captured (there are more entries than unique `Image_name` & URL), so we should be able to replace the URLs in the master file with the multimedia image URLs directly.\n",
    "\n",
    "We do want to compare record numbers to the master file first."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0"
      ]
     },
     "execution_count": 24,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "media_records = list(multimedia.record_number.unique())\n",
    "media_imgs = list(multimedia.Image_name.unique())\n",
    "master_records = list(df.record_number.unique())\n",
    "\n",
    "overlap_records = [record for record in media_records if record in master_records]\n",
    "len(overlap_records)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Ahhh no duplication then. Interesting (and good!)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(5501, 55)"
      ]
     },
     "execution_count": 25,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "non_odd_df = df.loc[df[\"record_number\"] != 3477891]\n",
    "\n",
    "test_odd_merge = pd.merge(odd_record,\n",
    "                          non_odd_df,\n",
    "                          on = \"Image_name\",\n",
    "                          how = \"inner\")\n",
    "test_odd_merge.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'https://zenodo.org/record/2677821/files/CAM000003_v.JPG'"
      ]
     },
     "execution_count": 26,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "multimedia.loc[multimedia[\"Image_name\"] == \"CAM000003_v.JPG\", \"identifier\"].values[0]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Duplication in `Image_name`, though that's not necessarily unexpected."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "CAMID               2704\n",
       "X                   5501\n",
       "Image_name          5497\n",
       "View                   2\n",
       "zenodo_name            1\n",
       "zenodo_link            1\n",
       "Sequence            2704\n",
       "Taxonomic_Name       195\n",
       "Locality             205\n",
       "Sample_accession     446\n",
       "Collected_by           0\n",
       "Other_ID               5\n",
       "Date                 200\n",
       "Dataset                1\n",
       "Store                 55\n",
       "Brood                  2\n",
       "Death_Date             0\n",
       "Cross_Type             0\n",
       "Stage                  0\n",
       "Sex                    3\n",
       "Unit_Type              2\n",
       "file_type              1\n",
       "record_number          1\n",
       "species              121\n",
       "subspecies            93\n",
       "genus                 38\n",
       "file_url            5497\n",
       "hybrid_stat            2\n",
       "dtype: int64"
      ]
     },
     "execution_count": 27,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "for image_name in list(odd_record.Image_name.unique()):\n",
    "    url = multimedia.loc[multimedia[\"Image_name\"] == image_name, \"identifier\"].values[0]\n",
    "    df.loc[(df[\"record_number\"] == 3477891) & (df[\"Image_name\"] == image_name), \"file_url\"] = url\n",
    "\n",
    "df.loc[df[\"record_number\"] == 3477891].nunique()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "CAMID          11991\n",
       "X              44809\n",
       "Image_name     36281\n",
       "zenodo_name       33\n",
       "zenodo_link       30\n",
       "file_url       39297\n",
       "Dataset            8\n",
       "dtype: int64"
      ]
     },
     "execution_count": 28,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df[id_cols].nunique()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Dataset\n",
       "Heliconiine Butterfly Collection Records from University of Cambridge    25211\n",
       "Patricio Salazar                                                          7519\n",
       "Nadeau Sheffield                                                          3233\n",
       "Bogota Collection (Camilo Salazar)                                         982\n",
       "Cambridge Collection                                                        47\n",
       "Mallet                                                                      22\n",
       "Merril_Gamboa                                                                6\n",
       "STRI Collection (Owen)                                                       4\n",
       "Name: count, dtype: int64"
      ]
     },
     "execution_count": 29,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.Dataset.value_counts()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "CAMID                6538\n",
       "X                   25211\n",
       "Image_name          17362\n",
       "View                    7\n",
       "zenodo_name            17\n",
       "zenodo_link            17\n",
       "Sequence             6538\n",
       "Taxonomic_Name        287\n",
       "Locality              372\n",
       "Sample_accession      485\n",
       "Collected_by            0\n",
       "Other_ID             1123\n",
       "Date                  282\n",
       "Dataset                 1\n",
       "Store                 102\n",
       "Brood                 102\n",
       "Death_Date              0\n",
       "Cross_Type              0\n",
       "Stage                   0\n",
       "Sex                     3\n",
       "Unit_Type               2\n",
       "file_type               2\n",
       "record_number          17\n",
       "species               207\n",
       "subspecies             99\n",
       "genus                  82\n",
       "file_url            19710\n",
       "hybrid_stat             2\n",
       "dtype: int64"
      ]
     },
     "execution_count": 30,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "HBCRUC = \"Heliconiine Butterfly Collection Records from University of Cambridge\"\n",
    "df.loc[df.Dataset == HBCRUC].nunique()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [],
   "source": [
    "df.to_csv(\"../metadata/Jiggins_Zenodo_Img_Master_3477891Patch.csv\", index = False)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "std",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}