Datasets:
Add download and checksum scripts.
Browse files- scripts/checksum.py +32 -0
- scripts/download_jiggins_subset.py +98 -0
scripts/checksum.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import hashlib
|
4 |
+
import csv
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
def md5_checksum(file_path):
|
8 |
+
hash_md5 = hashlib.md5()
|
9 |
+
with open(file_path, "rb") as f:
|
10 |
+
for chunk in iter(lambda: f.read(4096), b""):
|
11 |
+
hash_md5.update(chunk)
|
12 |
+
return hash_md5.hexdigest()
|
13 |
+
|
14 |
+
def get_checksums(input_directory, output_filepath):
|
15 |
+
with open(output_filepath, 'w', newline='') as csvfile:
|
16 |
+
writer = csv.writer(csvfile)
|
17 |
+
writer.writerow(["filepath", "filename", "md5"])
|
18 |
+
for root, dirs, files in os.walk(input_directory):
|
19 |
+
n_files = len(files)
|
20 |
+
for name in tqdm(files, total=n_files, desc="MD5ing"):
|
21 |
+
file_path = os.path.join(root, name)
|
22 |
+
checksum = md5_checksum(file_path)
|
23 |
+
writer.writerow([file_path, name, checksum])
|
24 |
+
print(f"Checksums written to {output_filepath}")
|
25 |
+
|
26 |
+
if __name__ == "__main__":
|
27 |
+
parser = argparse.ArgumentParser(description="Generate MD5 checksums for files in a directory")
|
28 |
+
parser.add_argument("--input-directory", required=True, help="Directory to traverse for files")
|
29 |
+
parser.add_argument("--output-filepath", required=True, help="Filepath for the output CSV file")
|
30 |
+
args = parser.parse_args()
|
31 |
+
get_checksums(args.input_directory, args.output_filepath)
|
32 |
+
|
scripts/download_jiggins_subset.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified code from https://huggingface.co/datasets/imageomics/Comparison-Subset-Jiggins/blob/main/scripts/download_jiggins_subset.py
|
2 |
+
# For downloading Jiggins images from any of the master CSV files
|
3 |
+
# Generates Checksum file for all images download
|
4 |
+
# logs image download in json file
|
5 |
+
|
6 |
+
import requests
|
7 |
+
import shutil
|
8 |
+
import json
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
+
from checksum import get_checksums
|
12 |
+
|
13 |
+
from tqdm import tqdm
|
14 |
+
import os
|
15 |
+
import argparse
|
16 |
+
|
17 |
+
|
18 |
+
def parse_args():
|
19 |
+
parser = argparse.ArgumentParser()
|
20 |
+
parser.add_argument("--csv", required=True, help="Path to CSV file with urls.", nargs="?")
|
21 |
+
parser.add_argument("--output", required=True, help="Main directory to download images into.", nargs="?")
|
22 |
+
|
23 |
+
return parser.parse_args()
|
24 |
+
|
25 |
+
|
26 |
+
def update_log(log_data, index, image, url, response_code):
|
27 |
+
# log status
|
28 |
+
log_entry = {}
|
29 |
+
log_entry["Image"] = image
|
30 |
+
log_entry["zenodo_link"] = url
|
31 |
+
log_entry["Response_status"] = response_code
|
32 |
+
log_data[index] = log_entry
|
33 |
+
|
34 |
+
return log_data
|
35 |
+
|
36 |
+
|
37 |
+
def download_images(csv_path, image_folder, log_filepath):
|
38 |
+
#load csv
|
39 |
+
jiggins_data = pd.read_csv(csv_path)
|
40 |
+
log_data = {}
|
41 |
+
|
42 |
+
for i in tqdm(range(0, len(jiggins_data))) :
|
43 |
+
species = jiggins_data["Taxonomic_Name"][i]
|
44 |
+
image_name = jiggins_data["X"][i].astype(str) + "_" + jiggins_data["Image_name"][i]
|
45 |
+
|
46 |
+
#download the image from url is not already downloaded
|
47 |
+
if os.path.exists(f"{image_folder}/{species}/{image_name}") != True:
|
48 |
+
#get image from url
|
49 |
+
url = jiggins_data["zenodo_link"][i]
|
50 |
+
response = requests.get(url, stream=True)
|
51 |
+
|
52 |
+
# log status
|
53 |
+
log_data = update_log(log_data,
|
54 |
+
index = i,
|
55 |
+
image = species + "/" + image_name,
|
56 |
+
url = url,
|
57 |
+
response_code = response.status_code
|
58 |
+
)
|
59 |
+
|
60 |
+
#create the species appropriate folder if necessary
|
61 |
+
if os.path.exists(f"{image_folder}/{species}") != True:
|
62 |
+
os.makedirs(f"{image_folder}/{species}", exist_ok=False)
|
63 |
+
|
64 |
+
#download the image
|
65 |
+
if response.status_code == 200:
|
66 |
+
with open(f"{image_folder}/{species}/{image_name}", "wb") as out_file:
|
67 |
+
shutil.copyfileobj(response.raw, out_file)
|
68 |
+
del response
|
69 |
+
|
70 |
+
with open(log_filepath, "w") as log_file:
|
71 |
+
json.dump(log_data, log_file, indent = 4)
|
72 |
+
|
73 |
+
return
|
74 |
+
|
75 |
+
def main():
|
76 |
+
|
77 |
+
#get arguments from commandline
|
78 |
+
args = parse_args()
|
79 |
+
csv_path = args.csv #path to our csv with urls to download images from
|
80 |
+
image_folder = args.output #folder where dataset will be downloaded to
|
81 |
+
|
82 |
+
# log file location
|
83 |
+
log_filepath = csv_path.split(".")[0] + "_log.json"
|
84 |
+
|
85 |
+
#dowload images from urls
|
86 |
+
download_images(csv_path, image_folder, log_filepath)
|
87 |
+
|
88 |
+
# generate checksums and save CSV to same folder as CSV used for download
|
89 |
+
checksum_path = csv_path.split(".")[0] + "_checksums.csv"
|
90 |
+
get_checksums(image_folder, checksum_path)
|
91 |
+
|
92 |
+
print(f"Images downloaded from {csv_path} to {image_folder}.")
|
93 |
+
print(f"Checksums recorded in {checksum_path} and download log is in {log_filepath}.")
|
94 |
+
|
95 |
+
return
|
96 |
+
|
97 |
+
if __name__ == "__main__":
|
98 |
+
main()
|