Datasets:
Update master files
Browse filesRemove references to v1 of record 3082688 (deduplication)
Add in taxonomic information for 3 homogeneous records missing taxa info.
Jiggins_Heliconius_Master.csv
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
Jiggins_Zenodo_Img_Master.csv
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe79fdb62909be50eff6f7016f02301c56ce09c9c0b164dce680810ec4149b2a
|
3 |
+
size 15528648
|
Jiggins_Zenodo_dorsal_Img_Master.csv
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/standardize_datasets.ipynb
ADDED
@@ -0,0 +1,2635 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pandas as pd"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "markdown",
|
14 |
+
"metadata": {},
|
15 |
+
"source": [
|
16 |
+
"It turns out [record 3082688](https://zenodo.org/records/3082688) is version 2 of [record 1247307](https://zenodo.org/records/1247307), where some mislabeling was fixed. Images from record 1247307 should not be used, so we will remove them here.\n",
|
17 |
+
"\n",
|
18 |
+
"Will also add `hybrid_stat` and `file_url` columns so these can be explored with all functionality of the [data dashboard](https://huggingface.co/spaces/imageomics/dashboard-prototype)."
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "code",
|
23 |
+
"execution_count": 2,
|
24 |
+
"metadata": {},
|
25 |
+
"outputs": [],
|
26 |
+
"source": [
|
27 |
+
"df = pd.read_csv(\"../Jiggins_Zenodo_Img_Master.csv\", low_memory=False)"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"execution_count": 3,
|
33 |
+
"metadata": {},
|
34 |
+
"outputs": [
|
35 |
+
{
|
36 |
+
"data": {
|
37 |
+
"text/plain": [
|
38 |
+
"CAMID 12586\n",
|
39 |
+
"X 49359\n",
|
40 |
+
"Image_name 37821\n",
|
41 |
+
"View 7\n",
|
42 |
+
"zenodo_name 36\n",
|
43 |
+
"zenodo_link 32\n",
|
44 |
+
"Sequence 11301\n",
|
45 |
+
"Taxonomic_Name 363\n",
|
46 |
+
"Locality 645\n",
|
47 |
+
"Sample_accession 1571\n",
|
48 |
+
"Collected_by 12\n",
|
49 |
+
"Other_ID 3088\n",
|
50 |
+
"Date 810\n",
|
51 |
+
"Dataset 8\n",
|
52 |
+
"Store 142\n",
|
53 |
+
"Brood 226\n",
|
54 |
+
"Death_Date 82\n",
|
55 |
+
"Cross_Type 30\n",
|
56 |
+
"Stage 1\n",
|
57 |
+
"Sex 3\n",
|
58 |
+
"Unit_Type 6\n",
|
59 |
+
"file_type 3\n",
|
60 |
+
"record_number 32\n",
|
61 |
+
"species 246\n",
|
62 |
+
"subspecies 155\n",
|
63 |
+
"genus 94\n",
|
64 |
+
"dtype: int64"
|
65 |
+
]
|
66 |
+
},
|
67 |
+
"execution_count": 3,
|
68 |
+
"metadata": {},
|
69 |
+
"output_type": "execute_result"
|
70 |
+
}
|
71 |
+
],
|
72 |
+
"source": [
|
73 |
+
"df.nunique()"
|
74 |
+
]
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"cell_type": "code",
|
78 |
+
"execution_count": 4,
|
79 |
+
"metadata": {},
|
80 |
+
"outputs": [
|
81 |
+
{
|
82 |
+
"name": "stdout",
|
83 |
+
"output_type": "stream",
|
84 |
+
"text": [
|
85 |
+
"<class 'pandas.core.series.Series'>\n",
|
86 |
+
"RangeIndex: 49359 entries, 0 to 49358\n",
|
87 |
+
"Series name: record_number\n",
|
88 |
+
"Non-Null Count Dtype\n",
|
89 |
+
"-------------- -----\n",
|
90 |
+
"49359 non-null int64\n",
|
91 |
+
"dtypes: int64(1)\n",
|
92 |
+
"memory usage: 385.7 KB\n"
|
93 |
+
]
|
94 |
+
}
|
95 |
+
],
|
96 |
+
"source": [
|
97 |
+
"df.record_number.info()"
|
98 |
+
]
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"cell_type": "code",
|
102 |
+
"execution_count": 5,
|
103 |
+
"metadata": {},
|
104 |
+
"outputs": [
|
105 |
+
{
|
106 |
+
"data": {
|
107 |
+
"text/plain": [
|
108 |
+
"CAMID 12586\n",
|
109 |
+
"X 46439\n",
|
110 |
+
"Image_name 37821\n",
|
111 |
+
"View 7\n",
|
112 |
+
"zenodo_name 35\n",
|
113 |
+
"zenodo_link 31\n",
|
114 |
+
"Sequence 11301\n",
|
115 |
+
"Taxonomic_Name 363\n",
|
116 |
+
"Locality 645\n",
|
117 |
+
"Sample_accession 1571\n",
|
118 |
+
"Collected_by 12\n",
|
119 |
+
"Other_ID 3088\n",
|
120 |
+
"Date 810\n",
|
121 |
+
"Dataset 8\n",
|
122 |
+
"Store 142\n",
|
123 |
+
"Brood 226\n",
|
124 |
+
"Death_Date 82\n",
|
125 |
+
"Cross_Type 30\n",
|
126 |
+
"Stage 1\n",
|
127 |
+
"Sex 3\n",
|
128 |
+
"Unit_Type 6\n",
|
129 |
+
"file_type 3\n",
|
130 |
+
"record_number 31\n",
|
131 |
+
"species 246\n",
|
132 |
+
"subspecies 155\n",
|
133 |
+
"genus 94\n",
|
134 |
+
"dtype: int64"
|
135 |
+
]
|
136 |
+
},
|
137 |
+
"execution_count": 5,
|
138 |
+
"metadata": {},
|
139 |
+
"output_type": "execute_result"
|
140 |
+
}
|
141 |
+
],
|
142 |
+
"source": [
|
143 |
+
"df = df.loc[df.record_number != 1247307]\n",
|
144 |
+
"df.nunique()"
|
145 |
+
]
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"cell_type": "markdown",
|
149 |
+
"metadata": {},
|
150 |
+
"source": [
|
151 |
+
"Checking all records on Zenodo for the [Butterfly Genetics Group](https://zenodo.org/communities/butterfly/records) (the overall source of the Jiggins data), [record 3477891](https://zenodo.org/records/3477891) and [record 2548678](https://zenodo.org/records/2548678) are marked as version 2 of records 3477412 & 1880783, respectively. Let's check that the first versions are not included.\n",
|
152 |
+
"\n",
|
153 |
+
"It is also noted in [record 2548678](https://zenodo.org/records/2548678):\n",
|
154 |
+
">Some images overlap with 'Cambridge butterfly wing collection batch 1', taken by Eva Whiltshire. Images here differ in having a white reflectance standard for calibration. Information on duplicates can be found in 'CAM.coll.patricio.batch2.csv'.\n",
|
155 |
+
"\n",
|
156 |
+
"Note that this is a reference to [record 1247307](https://zenodo.org/records/1247307), so the overlap is in fact with Cambridge butterfly wing collection batch 1- version 2 ([record 3082688](https://zenodo.org/records/3082688)); it is unclear as yet if the duplication information will be acurate considering the mislabelings fixed between the versions."
|
157 |
+
]
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"cell_type": "code",
|
161 |
+
"execution_count": 6,
|
162 |
+
"metadata": {},
|
163 |
+
"outputs": [
|
164 |
+
{
|
165 |
+
"data": {
|
166 |
+
"text/plain": [
|
167 |
+
"(0, 26)"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
"execution_count": 6,
|
171 |
+
"metadata": {},
|
172 |
+
"output_type": "execute_result"
|
173 |
+
}
|
174 |
+
],
|
175 |
+
"source": [
|
176 |
+
"v1s = [3477412, 1880783]\n",
|
177 |
+
"df.loc[df[\"record_number\"].isin(v1s)].shape"
|
178 |
+
]
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"cell_type": "markdown",
|
182 |
+
"metadata": {},
|
183 |
+
"source": [
|
184 |
+
"The good news is that neither of these earlier versions seem to have been picked up, so we can move on to assessing this and adding the `hybrid_stat` and `file_url` columns."
|
185 |
+
]
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"cell_type": "code",
|
189 |
+
"execution_count": 7,
|
190 |
+
"metadata": {},
|
191 |
+
"outputs": [
|
192 |
+
{
|
193 |
+
"data": {
|
194 |
+
"text/plain": [
|
195 |
+
"file_type\n",
|
196 |
+
"jpg 34152\n",
|
197 |
+
"raw 12226\n",
|
198 |
+
"tif 61\n",
|
199 |
+
"Name: count, dtype: int64"
|
200 |
+
]
|
201 |
+
},
|
202 |
+
"execution_count": 7,
|
203 |
+
"metadata": {},
|
204 |
+
"output_type": "execute_result"
|
205 |
+
}
|
206 |
+
],
|
207 |
+
"source": [
|
208 |
+
"df.file_type.value_counts()"
|
209 |
+
]
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"cell_type": "code",
|
213 |
+
"execution_count": 8,
|
214 |
+
"metadata": {},
|
215 |
+
"outputs": [
|
216 |
+
{
|
217 |
+
"data": {
|
218 |
+
"text/plain": [
|
219 |
+
"View\n",
|
220 |
+
"dorsal 22022\n",
|
221 |
+
"ventral 21704\n",
|
222 |
+
"forewing dorsal 406\n",
|
223 |
+
"hindwing dorsal 406\n",
|
224 |
+
"forewing ventral 406\n",
|
225 |
+
"hindwing ventral 406\n",
|
226 |
+
"dorsal and ventral 18\n",
|
227 |
+
"Name: count, dtype: int64"
|
228 |
+
]
|
229 |
+
},
|
230 |
+
"execution_count": 8,
|
231 |
+
"metadata": {},
|
232 |
+
"output_type": "execute_result"
|
233 |
+
}
|
234 |
+
],
|
235 |
+
"source": [
|
236 |
+
"df.View.value_counts()"
|
237 |
+
]
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"cell_type": "markdown",
|
241 |
+
"metadata": {},
|
242 |
+
"source": [
|
243 |
+
"We have 31 unique records represented in the full dataset. When we reduce down to just the Heliconius images, this will probably be less."
|
244 |
+
]
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"cell_type": "markdown",
|
248 |
+
"metadata": {},
|
249 |
+
"source": [
|
250 |
+
"### Add File URL Column"
|
251 |
+
]
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"cell_type": "code",
|
255 |
+
"execution_count": 9,
|
256 |
+
"metadata": {},
|
257 |
+
"outputs": [
|
258 |
+
{
|
259 |
+
"data": {
|
260 |
+
"text/html": [
|
261 |
+
"<div>\n",
|
262 |
+
"<style scoped>\n",
|
263 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
264 |
+
" vertical-align: middle;\n",
|
265 |
+
" }\n",
|
266 |
+
"\n",
|
267 |
+
" .dataframe tbody tr th {\n",
|
268 |
+
" vertical-align: top;\n",
|
269 |
+
" }\n",
|
270 |
+
"\n",
|
271 |
+
" .dataframe thead th {\n",
|
272 |
+
" text-align: right;\n",
|
273 |
+
" }\n",
|
274 |
+
"</style>\n",
|
275 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
276 |
+
" <thead>\n",
|
277 |
+
" <tr style=\"text-align: right;\">\n",
|
278 |
+
" <th></th>\n",
|
279 |
+
" <th>CAMID</th>\n",
|
280 |
+
" <th>X</th>\n",
|
281 |
+
" <th>Image_name</th>\n",
|
282 |
+
" <th>View</th>\n",
|
283 |
+
" <th>zenodo_name</th>\n",
|
284 |
+
" <th>zenodo_link</th>\n",
|
285 |
+
" <th>Sequence</th>\n",
|
286 |
+
" <th>Taxonomic_Name</th>\n",
|
287 |
+
" <th>Locality</th>\n",
|
288 |
+
" <th>Sample_accession</th>\n",
|
289 |
+
" <th>...</th>\n",
|
290 |
+
" <th>Cross_Type</th>\n",
|
291 |
+
" <th>Stage</th>\n",
|
292 |
+
" <th>Sex</th>\n",
|
293 |
+
" <th>Unit_Type</th>\n",
|
294 |
+
" <th>file_type</th>\n",
|
295 |
+
" <th>record_number</th>\n",
|
296 |
+
" <th>species</th>\n",
|
297 |
+
" <th>subspecies</th>\n",
|
298 |
+
" <th>genus</th>\n",
|
299 |
+
" <th>file_url</th>\n",
|
300 |
+
" </tr>\n",
|
301 |
+
" </thead>\n",
|
302 |
+
" <tbody>\n",
|
303 |
+
" <tr>\n",
|
304 |
+
" <th>34925</th>\n",
|
305 |
+
" <td>CAM041457</td>\n",
|
306 |
+
" <td>38799</td>\n",
|
307 |
+
" <td>CAM041457_d.CR2</td>\n",
|
308 |
+
" <td>dorsal</td>\n",
|
309 |
+
" <td>0.gmk.broods.all.csv</td>\n",
|
310 |
+
" <td>https://zenodo.org/record/4291095</td>\n",
|
311 |
+
" <td>41,457</td>\n",
|
312 |
+
" <td>Heliconius timareta</td>\n",
|
313 |
+
" <td>Reventador road 2</td>\n",
|
314 |
+
" <td>NaN</td>\n",
|
315 |
+
" <td>...</td>\n",
|
316 |
+
" <td>NaN</td>\n",
|
317 |
+
" <td>NaN</td>\n",
|
318 |
+
" <td>Male</td>\n",
|
319 |
+
" <td>NaN</td>\n",
|
320 |
+
" <td>raw</td>\n",
|
321 |
+
" <td>4291095</td>\n",
|
322 |
+
" <td>Heliconius timareta</td>\n",
|
323 |
+
" <td>NaN</td>\n",
|
324 |
+
" <td>Heliconius</td>\n",
|
325 |
+
" <td>https://zenodo.org/record/4291095/files/CAM041...</td>\n",
|
326 |
+
" </tr>\n",
|
327 |
+
" <tr>\n",
|
328 |
+
" <th>28286</th>\n",
|
329 |
+
" <td>CAM036145</td>\n",
|
330 |
+
" <td>41369</td>\n",
|
331 |
+
" <td>CAM036145_v.JPG</td>\n",
|
332 |
+
" <td>ventral</td>\n",
|
333 |
+
" <td>Filelist.csv</td>\n",
|
334 |
+
" <td>https://zenodo.org/record/5561246</td>\n",
|
335 |
+
" <td>36,145</td>\n",
|
336 |
+
" <td>Methona singularis</td>\n",
|
337 |
+
" <td>Guaribas - RG16</td>\n",
|
338 |
+
" <td>NaN</td>\n",
|
339 |
+
" <td>...</td>\n",
|
340 |
+
" <td>NaN</td>\n",
|
341 |
+
" <td>NaN</td>\n",
|
342 |
+
" <td>Male</td>\n",
|
343 |
+
" <td>NaN</td>\n",
|
344 |
+
" <td>jpg</td>\n",
|
345 |
+
" <td>5561246</td>\n",
|
346 |
+
" <td>Methona singularis</td>\n",
|
347 |
+
" <td>NaN</td>\n",
|
348 |
+
" <td>Methona</td>\n",
|
349 |
+
" <td>https://zenodo.org/record/5561246/files/CAM036...</td>\n",
|
350 |
+
" </tr>\n",
|
351 |
+
" <tr>\n",
|
352 |
+
" <th>21858</th>\n",
|
353 |
+
" <td>CAM017409</td>\n",
|
354 |
+
" <td>19047</td>\n",
|
355 |
+
" <td>CAM017409_d.CR2</td>\n",
|
356 |
+
" <td>dorsal</td>\n",
|
357 |
+
" <td>CAM.coll.PS.list.individuals.haplotagging.new....</td>\n",
|
358 |
+
" <td>https://zenodo.org/record/4153502</td>\n",
|
359 |
+
" <td>17,409</td>\n",
|
360 |
+
" <td>Heliconius erato ssp. lativitta</td>\n",
|
361 |
+
" <td>San Pedro de Arajuno, Río Arajuno</td>\n",
|
362 |
+
" <td>ERS353373</td>\n",
|
363 |
+
" <td>...</td>\n",
|
364 |
+
" <td>NaN</td>\n",
|
365 |
+
" <td>NaN</td>\n",
|
366 |
+
" <td>Female</td>\n",
|
367 |
+
" <td>wild</td>\n",
|
368 |
+
" <td>raw</td>\n",
|
369 |
+
" <td>4153502</td>\n",
|
370 |
+
" <td>Heliconius erato</td>\n",
|
371 |
+
" <td>lativitta</td>\n",
|
372 |
+
" <td>Heliconius</td>\n",
|
373 |
+
" <td>https://zenodo.org/record/4153502/files/CAM017...</td>\n",
|
374 |
+
" </tr>\n",
|
375 |
+
" <tr>\n",
|
376 |
+
" <th>12708</th>\n",
|
377 |
+
" <td>CAM010412</td>\n",
|
378 |
+
" <td>26792</td>\n",
|
379 |
+
" <td>CAM010412_v.CR2</td>\n",
|
380 |
+
" <td>ventral</td>\n",
|
381 |
+
" <td>2001_2.broods.batch.1.csv</td>\n",
|
382 |
+
" <td>https://zenodo.org/record/2549524</td>\n",
|
383 |
+
" <td>10,412</td>\n",
|
384 |
+
" <td>Heliconius sp.</td>\n",
|
385 |
+
" <td>NaN</td>\n",
|
386 |
+
" <td>NaN</td>\n",
|
387 |
+
" <td>...</td>\n",
|
388 |
+
" <td>NaN</td>\n",
|
389 |
+
" <td>NaN</td>\n",
|
390 |
+
" <td>Unknown</td>\n",
|
391 |
+
" <td>reared</td>\n",
|
392 |
+
" <td>raw</td>\n",
|
393 |
+
" <td>2549524</td>\n",
|
394 |
+
" <td>Heliconius sp.</td>\n",
|
395 |
+
" <td>NaN</td>\n",
|
396 |
+
" <td>Heliconius</td>\n",
|
397 |
+
" <td>https://zenodo.org/record/2549524/files/CAM010...</td>\n",
|
398 |
+
" </tr>\n",
|
399 |
+
" </tbody>\n",
|
400 |
+
"</table>\n",
|
401 |
+
"<p>4 rows × 27 columns</p>\n",
|
402 |
+
"</div>"
|
403 |
+
],
|
404 |
+
"text/plain": [
|
405 |
+
" CAMID X Image_name View \\\n",
|
406 |
+
"34925 CAM041457 38799 CAM041457_d.CR2 dorsal \n",
|
407 |
+
"28286 CAM036145 41369 CAM036145_v.JPG ventral \n",
|
408 |
+
"21858 CAM017409 19047 CAM017409_d.CR2 dorsal \n",
|
409 |
+
"12708 CAM010412 26792 CAM010412_v.CR2 ventral \n",
|
410 |
+
"\n",
|
411 |
+
" zenodo_name \\\n",
|
412 |
+
"34925 0.gmk.broods.all.csv \n",
|
413 |
+
"28286 Filelist.csv \n",
|
414 |
+
"21858 CAM.coll.PS.list.individuals.haplotagging.new.... \n",
|
415 |
+
"12708 2001_2.broods.batch.1.csv \n",
|
416 |
+
"\n",
|
417 |
+
" zenodo_link Sequence \\\n",
|
418 |
+
"34925 https://zenodo.org/record/4291095 41,457 \n",
|
419 |
+
"28286 https://zenodo.org/record/5561246 36,145 \n",
|
420 |
+
"21858 https://zenodo.org/record/4153502 17,409 \n",
|
421 |
+
"12708 https://zenodo.org/record/2549524 10,412 \n",
|
422 |
+
"\n",
|
423 |
+
" Taxonomic_Name Locality \\\n",
|
424 |
+
"34925 Heliconius timareta Reventador road 2 \n",
|
425 |
+
"28286 Methona singularis Guaribas - RG16 \n",
|
426 |
+
"21858 Heliconius erato ssp. lativitta San Pedro de Arajuno, Río Arajuno \n",
|
427 |
+
"12708 Heliconius sp. NaN \n",
|
428 |
+
"\n",
|
429 |
+
" Sample_accession ... Cross_Type Stage Sex Unit_Type file_type \\\n",
|
430 |
+
"34925 NaN ... NaN NaN Male NaN raw \n",
|
431 |
+
"28286 NaN ... NaN NaN Male NaN jpg \n",
|
432 |
+
"21858 ERS353373 ... NaN NaN Female wild raw \n",
|
433 |
+
"12708 NaN ... NaN NaN Unknown reared raw \n",
|
434 |
+
"\n",
|
435 |
+
" record_number species subspecies genus \\\n",
|
436 |
+
"34925 4291095 Heliconius timareta NaN Heliconius \n",
|
437 |
+
"28286 5561246 Methona singularis NaN Methona \n",
|
438 |
+
"21858 4153502 Heliconius erato lativitta Heliconius \n",
|
439 |
+
"12708 2549524 Heliconius sp. NaN Heliconius \n",
|
440 |
+
"\n",
|
441 |
+
" file_url \n",
|
442 |
+
"34925 https://zenodo.org/record/4291095/files/CAM041... \n",
|
443 |
+
"28286 https://zenodo.org/record/5561246/files/CAM036... \n",
|
444 |
+
"21858 https://zenodo.org/record/4153502/files/CAM017... \n",
|
445 |
+
"12708 https://zenodo.org/record/2549524/files/CAM010... \n",
|
446 |
+
"\n",
|
447 |
+
"[4 rows x 27 columns]"
|
448 |
+
]
|
449 |
+
},
|
450 |
+
"execution_count": 9,
|
451 |
+
"metadata": {},
|
452 |
+
"output_type": "execute_result"
|
453 |
+
}
|
454 |
+
],
|
455 |
+
"source": [
|
456 |
+
"df[\"file_url\"] = df[\"zenodo_link\"] + \"/files/\" + df[\"Image_name\"]\n",
|
457 |
+
"df.sample(4)"
|
458 |
+
]
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"cell_type": "markdown",
|
462 |
+
"metadata": {},
|
463 |
+
"source": [
|
464 |
+
"### Add Proper Taxonomic Name for Crosstypes\n",
|
465 |
+
"\n",
|
466 |
+
"We want the cross types to also have full taxonomic names (`Heliconius <species> <subspecies>`) so this can be used in downloading to appropriate branches and also for easier diversity counts. Cross Types will still be easily filtered using the `Cross_Type` column."
|
467 |
+
]
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"cell_type": "code",
|
471 |
+
"execution_count": 10,
|
472 |
+
"metadata": {},
|
473 |
+
"outputs": [
|
474 |
+
{
|
475 |
+
"data": {
|
476 |
+
"text/plain": [
|
477 |
+
"subspecies\n",
|
478 |
+
"(malleti x plesseni) x malleti 1007\n",
|
479 |
+
"plesseni x (malleti x plesseni) 462\n",
|
480 |
+
"(plesseni x malleti) x (malleti x plesseni) 348\n",
|
481 |
+
"(plesseni x malleti) x plesseni 345\n",
|
482 |
+
"malleti x (plesseni x malleti) 324\n",
|
483 |
+
"(plesseni x malleti) x (plesseni x malleti) 228\n",
|
484 |
+
"(malleti x plesseni) x plesseni 216\n",
|
485 |
+
"plesseni x malleti 212\n",
|
486 |
+
"malleti x plesseni 156\n",
|
487 |
+
"lativitta x notabilis 111\n",
|
488 |
+
"plesseni x (plesseni x malleti) 106\n",
|
489 |
+
"(lativitta x notabilis) x notabilis 90\n",
|
490 |
+
"(lativitta x notabilis) x lativitta 90\n",
|
491 |
+
"(malleti x plesseni) x (malleti x plesseni) 81\n",
|
492 |
+
"(plesseni x malleti) x malleti 80\n",
|
493 |
+
"(malleti x plesseni) x (plesseni x malleti) 42\n",
|
494 |
+
"malleti 28\n",
|
495 |
+
"plesseni 28\n",
|
496 |
+
"(latRo x notabilis) x notabilis 12\n",
|
497 |
+
"latRo x notabilis 4\n",
|
498 |
+
"lativitta 4\n",
|
499 |
+
"Name: count, dtype: int64"
|
500 |
+
]
|
501 |
+
},
|
502 |
+
"execution_count": 10,
|
503 |
+
"metadata": {},
|
504 |
+
"output_type": "execute_result"
|
505 |
+
}
|
506 |
+
],
|
507 |
+
"source": [
|
508 |
+
"df.loc[df[\"Cross_Type\"].notna(), \"subspecies\"].value_counts()"
|
509 |
+
]
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"cell_type": "code",
|
513 |
+
"execution_count": 11,
|
514 |
+
"metadata": {},
|
515 |
+
"outputs": [
|
516 |
+
{
|
517 |
+
"data": {
|
518 |
+
"text/plain": [
|
519 |
+
"Cross_Type\n",
|
520 |
+
"Test cross (4 spots x 4 spots) 150\n",
|
521 |
+
"Test cross (N heterozygocity - NBNN x malleti - thin) 114\n",
|
522 |
+
"Test cross (N heterozygozity) 78\n",
|
523 |
+
"Test cross (short HW bar) 54\n",
|
524 |
+
"Test cross (4 spots x 2 banded) 48\n",
|
525 |
+
"2 banded 16\n",
|
526 |
+
"hybrid 10\n",
|
527 |
+
"Ac heterozygote 4\n",
|
528 |
+
"Test cross (2 banded F2 x 2 banded F2) 4\n",
|
529 |
+
"Name: count, dtype: int64"
|
530 |
+
]
|
531 |
+
},
|
532 |
+
"execution_count": 11,
|
533 |
+
"metadata": {},
|
534 |
+
"output_type": "execute_result"
|
535 |
+
}
|
536 |
+
],
|
537 |
+
"source": [
|
538 |
+
"df.loc[(df[\"Cross_Type\"].notna()) & (df[\"subspecies\"].isna()), \"Cross_Type\"].value_counts()"
|
539 |
+
]
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"cell_type": "markdown",
|
543 |
+
"metadata": {},
|
544 |
+
"source": [
|
545 |
+
"Notice that we have hybrids here which should be indicated as such though they don't all have an ` x ` in their name. We'll remember this for the `hybrid_stat` column and generate using the Cross Type indicator. Our only non-hybrid Cross Types are `malleti`, `plesseni`, and `lativitta`."
|
546 |
+
]
|
547 |
+
},
|
548 |
+
{
|
549 |
+
"cell_type": "code",
|
550 |
+
"execution_count": 12,
|
551 |
+
"metadata": {},
|
552 |
+
"outputs": [
|
553 |
+
{
|
554 |
+
"data": {
|
555 |
+
"text/plain": [
|
556 |
+
"array(['hybrid', 'Ac heterozygote', '2 banded',\n",
|
557 |
+
" 'Test cross (2 banded F2 x 2 banded F2)',\n",
|
558 |
+
" 'Test cross (4 spots x 2 banded)', 'Test cross (N heterozygozity)',\n",
|
559 |
+
" 'Test cross (short HW bar)', 'Test cross (4 spots x 4 spots)',\n",
|
560 |
+
" 'Test cross (N heterozygocity - NBNN x malleti - thin)'],\n",
|
561 |
+
" dtype=object)"
|
562 |
+
]
|
563 |
+
},
|
564 |
+
"execution_count": 12,
|
565 |
+
"metadata": {},
|
566 |
+
"output_type": "execute_result"
|
567 |
+
}
|
568 |
+
],
|
569 |
+
"source": [
|
570 |
+
"non_specific_cross_hybrids = df.loc[(df[\"Cross_Type\"].notna()) & (df[\"subspecies\"].isna()), \"Cross_Type\"].unique()\n",
|
571 |
+
"non_specific_cross_hybrids"
|
572 |
+
]
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"cell_type": "code",
|
576 |
+
"execution_count": 13,
|
577 |
+
"metadata": {},
|
578 |
+
"outputs": [
|
579 |
+
{
|
580 |
+
"data": {
|
581 |
+
"text/plain": [
|
582 |
+
"array(['cythera', 'cyrbia', 'venus', 'venus x chestertonii', 'vulcanus',\n",
|
583 |
+
" 'chestertonii', 'vulcanus x melpomene', 'lativitta', 'malleti',\n",
|
584 |
+
" 'erato', 'ssp.nov.P', 'melpomene', 'willmotti',\n",
|
585 |
+
" 'chestertonii x venus', 'eleuchia', 'cydnides', 'weymeri',\n",
|
586 |
+
" 'chioneus', 'demophoon', 'hydara', 'sapho', 'numata', 'iulia',\n",
|
587 |
+
" 'melpomene x thelxiope', 'wallacei', 'rosina', 'formosus',\n",
|
588 |
+
" 'melpomene x rosina', 'menapis', 'hydara x petiverana', 'decumana',\n",
|
589 |
+
" 'relata', 'agna', 'isthmia', 'bicoloratus', 'euphrasius',\n",
|
590 |
+
" 'salapia', 'matronalis', 'ethica', 'agnosia', 'andromica',\n",
|
591 |
+
" 'hippocrenis', 'saturata', 'evanides', 'lyra', 'pagasa',\n",
|
592 |
+
" 'staudingeri', 'valora', 'cassotis', 'chiriquensis', 'alithea',\n",
|
593 |
+
" 'timareta', 'plesseni', 'notabilis', 'amaryllis', 'thelxinoe',\n",
|
594 |
+
" 'doris', 'amaryllis x aglaope', 'aglaope', 'carbo', 'lycaste',\n",
|
595 |
+
" 'idae', 'macrinus', 'abida', 'notilla', 'neustetteri', 'giulia',\n",
|
596 |
+
" 'panamensis', 'eleusinus', 'agalla', 'xanthina', 'ecuadorensis',\n",
|
597 |
+
" 'congener', 'etylus', 'derasa', 'lenaeus', 'petiverana',\n",
|
598 |
+
" 'melicerta', 'thelxiopeia', 'meriana', 'plesseni x malleti',\n",
|
599 |
+
" 'notabilis x lativitta', 'sara', 'silvana', 'amalfreda',\n",
|
600 |
+
" 'hydara x amalfreda', 'flavescens', 'hydara x erato',\n",
|
601 |
+
" 'meriana x melpomene', 'nanna', 'daetina', 'nesaea', 'phyllis',\n",
|
602 |
+
" 'laphria', 'paraiya', 'lysimnia', 'daeta', 'yanetta', 'pyrrha',\n",
|
603 |
+
" 'casabranca', 'tristero', 'dignus', 'bellula',\n",
|
604 |
+
" 'dignus x lativitta', 'malleti x bellula', 'napoensis',\n",
|
605 |
+
" 'clysonymus', 'sotericus', 'primularis', 'sprucei', 'bassleri',\n",
|
606 |
+
" 'eximius', 'manabiana', 'nigrippus', 'hygiana', 'neildi',\n",
|
607 |
+
" 'clysonomus', 'hierax', 'magdalena', 'calathus', 'corena',\n",
|
608 |
+
" 'zelinde', 'florencia', 'weymeri f. gustavi', 'weymeri f. weymeri',\n",
|
609 |
+
" 'wanningeri', 'cydno', 'cordula', 'linaresi', 'lisethae',\n",
|
610 |
+
" 'hermogenes', 'martinae', 'vicina', 'malleti x vicina',\n",
|
611 |
+
" 'reductimacula', 'sergestus', 'felix', 'aerotome'], dtype=object)"
|
612 |
+
]
|
613 |
+
},
|
614 |
+
"execution_count": 13,
|
615 |
+
"metadata": {},
|
616 |
+
"output_type": "execute_result"
|
617 |
+
}
|
618 |
+
],
|
619 |
+
"source": [
|
620 |
+
"df.loc[df[\"Cross_Type\"].isna(), \"subspecies\"].dropna().unique()"
|
621 |
+
]
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"cell_type": "code",
|
625 |
+
"execution_count": 14,
|
626 |
+
"metadata": {},
|
627 |
+
"outputs": [],
|
628 |
+
"source": [
|
629 |
+
"def get_cross_taxa_name(species, cross_type):\n",
|
630 |
+
" # label unspecified hybrids as such\n",
|
631 |
+
" if cross_type in non_specific_cross_hybrids:\n",
|
632 |
+
" return species + \" \" + \"cross hybrid\"\n",
|
633 |
+
" \n",
|
634 |
+
" # separate out hybrids from non-hybrids\n",
|
635 |
+
" subsp_cross_list = cross_type.split(\"(\")\n",
|
636 |
+
" if len(subsp_cross_list) > 1:\n",
|
637 |
+
" subsp_cross = subsp_cross_list[1].split(\")\")[0]\n",
|
638 |
+
" else:\n",
|
639 |
+
" subsp_cross = cross_type\n",
|
640 |
+
" \n",
|
641 |
+
" # Ensure order of hybrid names is consistent so they get placed in same folders (using scripts/download_jiggins.py)\n",
|
642 |
+
" # And so counts by taxonomic name aren't needlessly skewed\n",
|
643 |
+
" if subsp_cross == \"malleti x plesseni\":\n",
|
644 |
+
" subsp_cross = \"plesseni x malleti\"\n",
|
645 |
+
" elif subsp_cross == \"lativitta x notabilis\":\n",
|
646 |
+
" subsp_cross = \"notabilis x lativitta\"\n",
|
647 |
+
" \n",
|
648 |
+
" # Set taxa_name as with non cross types labeled to subspecies\n",
|
649 |
+
" taxa_name = species + \" ssp. \" + subsp_cross\n",
|
650 |
+
" return taxa_name"
|
651 |
+
]
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"cell_type": "code",
|
655 |
+
"execution_count": 15,
|
656 |
+
"metadata": {},
|
657 |
+
"outputs": [
|
658 |
+
{
|
659 |
+
"name": "stdout",
|
660 |
+
"output_type": "stream",
|
661 |
+
"text": [
|
662 |
+
"H.sp. ssp. malleti\n",
|
663 |
+
"H.sp. ssp. plesseni x malleti\n",
|
664 |
+
"H.sp. ssp. plesseni\n",
|
665 |
+
"H.sp. ssp. plesseni x malleti\n",
|
666 |
+
"H.sp. ssp. latRo x notabilis\n",
|
667 |
+
"H.sp. ssp. latRo x notabilis\n",
|
668 |
+
"H.sp. ssp. plesseni x malleti\n",
|
669 |
+
"H.sp. ssp. plesseni x malleti\n",
|
670 |
+
"H.sp. ssp. plesseni x malleti\n",
|
671 |
+
"H.sp. ssp. plesseni x malleti\n",
|
672 |
+
"H.sp. ssp. notabilis x lativitta\n",
|
673 |
+
"H.sp. ssp. plesseni x malleti\n",
|
674 |
+
"H.sp. ssp. plesseni x malleti\n",
|
675 |
+
"H.sp. ssp. plesseni x malleti\n",
|
676 |
+
"H.sp. ssp. plesseni x malleti\n",
|
677 |
+
"H.sp. ssp. plesseni x malleti\n",
|
678 |
+
"H.sp. cross hybrid\n",
|
679 |
+
"H.sp. ssp. plesseni x malleti\n",
|
680 |
+
"H.sp. ssp. notabilis x lativitta\n",
|
681 |
+
"H.sp. ssp. notabilis x lativitta\n",
|
682 |
+
"H.sp. cross hybrid\n",
|
683 |
+
"H.sp. ssp. plesseni x malleti\n",
|
684 |
+
"H.sp. cross hybrid\n",
|
685 |
+
"H.sp. ssp. lativitta\n",
|
686 |
+
"H.sp. cross hybrid\n",
|
687 |
+
"H.sp. cross hybrid\n",
|
688 |
+
"H.sp. cross hybrid\n",
|
689 |
+
"H.sp. cross hybrid\n",
|
690 |
+
"H.sp. cross hybrid\n",
|
691 |
+
"H.sp. cross hybrid\n"
|
692 |
+
]
|
693 |
+
}
|
694 |
+
],
|
695 |
+
"source": [
|
696 |
+
"for cross_type in list(df[\"Cross_Type\"].dropna().unique()):\n",
|
697 |
+
" print(get_cross_taxa_name(\"H.sp.\", cross_type))"
|
698 |
+
]
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"cell_type": "code",
|
702 |
+
"execution_count": 16,
|
703 |
+
"metadata": {},
|
704 |
+
"outputs": [
|
705 |
+
{
|
706 |
+
"data": {
|
707 |
+
"text/plain": [
|
708 |
+
"array(['Heliconius melpomene', 'Heliconius erato'], dtype=object)"
|
709 |
+
]
|
710 |
+
},
|
711 |
+
"execution_count": 16,
|
712 |
+
"metadata": {},
|
713 |
+
"output_type": "execute_result"
|
714 |
+
}
|
715 |
+
],
|
716 |
+
"source": [
|
717 |
+
"df.loc[df[\"Cross_Type\"].notna(), \"species\"].unique()"
|
718 |
+
]
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"cell_type": "code",
|
722 |
+
"execution_count": 17,
|
723 |
+
"metadata": {},
|
724 |
+
"outputs": [
|
725 |
+
{
|
726 |
+
"data": {
|
727 |
+
"text/plain": [
|
728 |
+
"array(['Heliconius melpomene ssp. malleti',\n",
|
729 |
+
" 'Heliconius melpomene ssp. plesseni x malleti',\n",
|
730 |
+
" 'Heliconius melpomene ssp. plesseni',\n",
|
731 |
+
" 'Heliconius erato ssp. latRo x notabilis',\n",
|
732 |
+
" 'Heliconius erato ssp. notabilis x lativitta',\n",
|
733 |
+
" 'Heliconius erato cross hybrid',\n",
|
734 |
+
" 'Heliconius melpomene cross hybrid',\n",
|
735 |
+
" 'Heliconius erato ssp. lativitta'], dtype=object)"
|
736 |
+
]
|
737 |
+
},
|
738 |
+
"execution_count": 17,
|
739 |
+
"metadata": {},
|
740 |
+
"output_type": "execute_result"
|
741 |
+
}
|
742 |
+
],
|
743 |
+
"source": [
|
744 |
+
"# https://stackoverflow.com/a/52854800\n",
|
745 |
+
"df.loc[df[\"Cross_Type\"].notna(), \"Taxonomic_Name\"] = df.loc[df[\"Cross_Type\"].notna()].apply(lambda x: get_cross_taxa_name(x[\"species\"], x[\"Cross_Type\"]), axis = 1)\n",
|
746 |
+
"df.loc[df[\"Cross_Type\"].notna(), \"Taxonomic_Name\"].unique()"
|
747 |
+
]
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"cell_type": "code",
|
751 |
+
"execution_count": 18,
|
752 |
+
"metadata": {},
|
753 |
+
"outputs": [
|
754 |
+
{
|
755 |
+
"data": {
|
756 |
+
"text/plain": [
|
757 |
+
"366"
|
758 |
+
]
|
759 |
+
},
|
760 |
+
"execution_count": 18,
|
761 |
+
"metadata": {},
|
762 |
+
"output_type": "execute_result"
|
763 |
+
}
|
764 |
+
],
|
765 |
+
"source": [
|
766 |
+
"df.Taxonomic_Name.nunique()"
|
767 |
+
]
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"cell_type": "markdown",
|
771 |
+
"metadata": {},
|
772 |
+
"source": [
|
773 |
+
"So we've added 3 more unique values of `Taxonomic_Name`, that checks out: `Heliconius erato ssp. latRo x notabilis`, `Heliconius erato cross hybrid`, and `Heliconius melpomene cross hybrid`."
|
774 |
+
]
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"cell_type": "markdown",
|
778 |
+
"metadata": {},
|
779 |
+
"source": [
|
780 |
+
"### Add Hybrid Status Column"
|
781 |
+
]
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"cell_type": "code",
|
785 |
+
"execution_count": 19,
|
786 |
+
"metadata": {},
|
787 |
+
"outputs": [
|
788 |
+
{
|
789 |
+
"data": {
|
790 |
+
"text/plain": [
|
791 |
+
"20"
|
792 |
+
]
|
793 |
+
},
|
794 |
+
"execution_count": 19,
|
795 |
+
"metadata": {},
|
796 |
+
"output_type": "execute_result"
|
797 |
+
}
|
798 |
+
],
|
799 |
+
"source": [
|
800 |
+
"hybrids = [taxa_name for taxa_name in list(df[\"Taxonomic_Name\"].dropna().unique()) if (\" x \" in taxa_name) or (\"hybrid\" in taxa_name)]\n",
|
801 |
+
"len(hybrids)"
|
802 |
+
]
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"cell_type": "code",
|
806 |
+
"execution_count": 20,
|
807 |
+
"metadata": {},
|
808 |
+
"outputs": [
|
809 |
+
{
|
810 |
+
"data": {
|
811 |
+
"text/plain": [
|
812 |
+
"['Heliconius erato ssp. venus x chestertonii',\n",
|
813 |
+
" 'Heliconius melpomene ssp. vulcanus x melpomene',\n",
|
814 |
+
" 'Heliconius erato ssp. chestertonii x venus',\n",
|
815 |
+
" 'Heliconius melpomene ssp. melpomene x thelxiope',\n",
|
816 |
+
" 'Heliconius melpomene ssp. melpomene x rosina',\n",
|
817 |
+
" 'Heliconius hybrid',\n",
|
818 |
+
" 'Heliconius erato ssp. hydara x petiverana',\n",
|
819 |
+
" 'Heliconius melpomene ssp. amaryllis x aglaope',\n",
|
820 |
+
" 'Anartia fatima x amathea',\n",
|
821 |
+
" 'Heliconius melpomene ssp. plesseni x malleti',\n",
|
822 |
+
" 'Heliconius erato ssp. notabilis x lativitta',\n",
|
823 |
+
" 'Heliconius erato ssp. latRo x notabilis',\n",
|
824 |
+
" 'Heliconius erato cross hybrid',\n",
|
825 |
+
" 'Heliconius melpomene cross hybrid',\n",
|
826 |
+
" 'Heliconius erato ssp. hydara x amalfreda',\n",
|
827 |
+
" 'Heliconius erato ssp. hydara x erato',\n",
|
828 |
+
" 'Heliconius melpomene ssp. meriana x melpomene',\n",
|
829 |
+
" 'Heliconius melpomene ssp. dignus x lativitta',\n",
|
830 |
+
" 'Heliconius melpomene ssp. malleti x bellula',\n",
|
831 |
+
" 'Heliconius melpomene ssp. malleti x vicina']"
|
832 |
+
]
|
833 |
+
},
|
834 |
+
"execution_count": 20,
|
835 |
+
"metadata": {},
|
836 |
+
"output_type": "execute_result"
|
837 |
+
}
|
838 |
+
],
|
839 |
+
"source": [
|
840 |
+
"hybrids"
|
841 |
+
]
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"cell_type": "markdown",
|
845 |
+
"metadata": {},
|
846 |
+
"source": [
|
847 |
+
"Observe that we have one species-level hybrid: `Anartia fatima x amathea`."
|
848 |
+
]
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"cell_type": "code",
|
852 |
+
"execution_count": 21,
|
853 |
+
"metadata": {},
|
854 |
+
"outputs": [],
|
855 |
+
"source": [
|
856 |
+
"sp_hybrid_parents = [\"Anartia fatima\", \"Anartia amathea\"]"
|
857 |
+
]
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"cell_type": "code",
|
861 |
+
"execution_count": 22,
|
862 |
+
"metadata": {},
|
863 |
+
"outputs": [],
|
864 |
+
"source": [
|
865 |
+
"df[\"hybrid_stat\"] = None\n",
|
866 |
+
"df.loc[df[\"subspecies\"].notna(), \"hybrid_stat\"] = \"non-hybrid\"\n",
|
867 |
+
"df.loc[df[\"species\"].isin(sp_hybrid_parents), \"hybrid_stat\"] = \"non-hybrid\"\n",
|
868 |
+
"\n",
|
869 |
+
"df.loc[df[\"Taxonomic_Name\"].isin(hybrids), \"hybrid_stat\"] = \"hybrid\""
|
870 |
+
]
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"cell_type": "code",
|
874 |
+
"execution_count": 23,
|
875 |
+
"metadata": {},
|
876 |
+
"outputs": [
|
877 |
+
{
|
878 |
+
"data": {
|
879 |
+
"text/html": [
|
880 |
+
"<div>\n",
|
881 |
+
"<style scoped>\n",
|
882 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
883 |
+
" vertical-align: middle;\n",
|
884 |
+
" }\n",
|
885 |
+
"\n",
|
886 |
+
" .dataframe tbody tr th {\n",
|
887 |
+
" vertical-align: top;\n",
|
888 |
+
" }\n",
|
889 |
+
"\n",
|
890 |
+
" .dataframe thead th {\n",
|
891 |
+
" text-align: right;\n",
|
892 |
+
" }\n",
|
893 |
+
"</style>\n",
|
894 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
895 |
+
" <thead>\n",
|
896 |
+
" <tr style=\"text-align: right;\">\n",
|
897 |
+
" <th></th>\n",
|
898 |
+
" <th>CAMID</th>\n",
|
899 |
+
" <th>X</th>\n",
|
900 |
+
" <th>Image_name</th>\n",
|
901 |
+
" <th>View</th>\n",
|
902 |
+
" <th>zenodo_name</th>\n",
|
903 |
+
" <th>zenodo_link</th>\n",
|
904 |
+
" <th>Sequence</th>\n",
|
905 |
+
" <th>Taxonomic_Name</th>\n",
|
906 |
+
" <th>Locality</th>\n",
|
907 |
+
" <th>Sample_accession</th>\n",
|
908 |
+
" <th>...</th>\n",
|
909 |
+
" <th>Stage</th>\n",
|
910 |
+
" <th>Sex</th>\n",
|
911 |
+
" <th>Unit_Type</th>\n",
|
912 |
+
" <th>file_type</th>\n",
|
913 |
+
" <th>record_number</th>\n",
|
914 |
+
" <th>species</th>\n",
|
915 |
+
" <th>subspecies</th>\n",
|
916 |
+
" <th>genus</th>\n",
|
917 |
+
" <th>file_url</th>\n",
|
918 |
+
" <th>hybrid_stat</th>\n",
|
919 |
+
" </tr>\n",
|
920 |
+
" </thead>\n",
|
921 |
+
" <tbody>\n",
|
922 |
+
" <tr>\n",
|
923 |
+
" <th>7326</th>\n",
|
924 |
+
" <td>CAM002890</td>\n",
|
925 |
+
" <td>8482</td>\n",
|
926 |
+
" <td>CAM002890_v.JPG</td>\n",
|
927 |
+
" <td>ventral</td>\n",
|
928 |
+
" <td>CAM.coll.images.batch5.csv</td>\n",
|
929 |
+
" <td>https://zenodo.org/record/2684906</td>\n",
|
930 |
+
" <td>2,890</td>\n",
|
931 |
+
" <td>Anartia fatima</td>\n",
|
932 |
+
" <td>El Tirao,</td>\n",
|
933 |
+
" <td>NaN</td>\n",
|
934 |
+
" <td>...</td>\n",
|
935 |
+
" <td>NaN</td>\n",
|
936 |
+
" <td>Female</td>\n",
|
937 |
+
" <td>wild</td>\n",
|
938 |
+
" <td>jpg</td>\n",
|
939 |
+
" <td>2684906</td>\n",
|
940 |
+
" <td>Anartia fatima</td>\n",
|
941 |
+
" <td>NaN</td>\n",
|
942 |
+
" <td>Anartia</td>\n",
|
943 |
+
" <td>https://zenodo.org/record/2684906/files/CAM002...</td>\n",
|
944 |
+
" <td>non-hybrid</td>\n",
|
945 |
+
" </tr>\n",
|
946 |
+
" <tr>\n",
|
947 |
+
" <th>7327</th>\n",
|
948 |
+
" <td>CAM002890</td>\n",
|
949 |
+
" <td>45376</td>\n",
|
950 |
+
" <td>CAM002890_v.JPG</td>\n",
|
951 |
+
" <td>ventral</td>\n",
|
952 |
+
" <td>occurences_and_multimedia.csv</td>\n",
|
953 |
+
" <td>https://zenodo.org/record/3477891</td>\n",
|
954 |
+
" <td>2,890</td>\n",
|
955 |
+
" <td>Anartia fatima</td>\n",
|
956 |
+
" <td>El Tirao,</td>\n",
|
957 |
+
" <td>NaN</td>\n",
|
958 |
+
" <td>...</td>\n",
|
959 |
+
" <td>NaN</td>\n",
|
960 |
+
" <td>Female</td>\n",
|
961 |
+
" <td>wild</td>\n",
|
962 |
+
" <td>jpg</td>\n",
|
963 |
+
" <td>3477891</td>\n",
|
964 |
+
" <td>Anartia fatima</td>\n",
|
965 |
+
" <td>NaN</td>\n",
|
966 |
+
" <td>Anartia</td>\n",
|
967 |
+
" <td>https://zenodo.org/record/3477891/files/CAM002...</td>\n",
|
968 |
+
" <td>non-hybrid</td>\n",
|
969 |
+
" </tr>\n",
|
970 |
+
" <tr>\n",
|
971 |
+
" <th>7328</th>\n",
|
972 |
+
" <td>CAM002890</td>\n",
|
973 |
+
" <td>45375</td>\n",
|
974 |
+
" <td>CAM002890_d.JPG</td>\n",
|
975 |
+
" <td>dorsal</td>\n",
|
976 |
+
" <td>occurences_and_multimedia.csv</td>\n",
|
977 |
+
" <td>https://zenodo.org/record/3477891</td>\n",
|
978 |
+
" <td>2,890</td>\n",
|
979 |
+
" <td>Anartia fatima</td>\n",
|
980 |
+
" <td>El Tirao,</td>\n",
|
981 |
+
" <td>NaN</td>\n",
|
982 |
+
" <td>...</td>\n",
|
983 |
+
" <td>NaN</td>\n",
|
984 |
+
" <td>Female</td>\n",
|
985 |
+
" <td>wild</td>\n",
|
986 |
+
" <td>jpg</td>\n",
|
987 |
+
" <td>3477891</td>\n",
|
988 |
+
" <td>Anartia fatima</td>\n",
|
989 |
+
" <td>NaN</td>\n",
|
990 |
+
" <td>Anartia</td>\n",
|
991 |
+
" <td>https://zenodo.org/record/3477891/files/CAM002...</td>\n",
|
992 |
+
" <td>non-hybrid</td>\n",
|
993 |
+
" </tr>\n",
|
994 |
+
" <tr>\n",
|
995 |
+
" <th>7329</th>\n",
|
996 |
+
" <td>CAM002890</td>\n",
|
997 |
+
" <td>8481</td>\n",
|
998 |
+
" <td>CAM002890_d.JPG</td>\n",
|
999 |
+
" <td>dorsal</td>\n",
|
1000 |
+
" <td>CAM.coll.images.batch5.csv</td>\n",
|
1001 |
+
" <td>https://zenodo.org/record/2684906</td>\n",
|
1002 |
+
" <td>2,890</td>\n",
|
1003 |
+
" <td>Anartia fatima</td>\n",
|
1004 |
+
" <td>El Tirao,</td>\n",
|
1005 |
+
" <td>NaN</td>\n",
|
1006 |
+
" <td>...</td>\n",
|
1007 |
+
" <td>NaN</td>\n",
|
1008 |
+
" <td>Female</td>\n",
|
1009 |
+
" <td>wild</td>\n",
|
1010 |
+
" <td>jpg</td>\n",
|
1011 |
+
" <td>2684906</td>\n",
|
1012 |
+
" <td>Anartia fatima</td>\n",
|
1013 |
+
" <td>NaN</td>\n",
|
1014 |
+
" <td>Anartia</td>\n",
|
1015 |
+
" <td>https://zenodo.org/record/2684906/files/CAM002...</td>\n",
|
1016 |
+
" <td>non-hybrid</td>\n",
|
1017 |
+
" </tr>\n",
|
1018 |
+
" </tbody>\n",
|
1019 |
+
"</table>\n",
|
1020 |
+
"<p>4 rows × 28 columns</p>\n",
|
1021 |
+
"</div>"
|
1022 |
+
],
|
1023 |
+
"text/plain": [
|
1024 |
+
" CAMID X Image_name View \\\n",
|
1025 |
+
"7326 CAM002890 8482 CAM002890_v.JPG ventral \n",
|
1026 |
+
"7327 CAM002890 45376 CAM002890_v.JPG ventral \n",
|
1027 |
+
"7328 CAM002890 45375 CAM002890_d.JPG dorsal \n",
|
1028 |
+
"7329 CAM002890 8481 CAM002890_d.JPG dorsal \n",
|
1029 |
+
"\n",
|
1030 |
+
" zenodo_name zenodo_link \\\n",
|
1031 |
+
"7326 CAM.coll.images.batch5.csv https://zenodo.org/record/2684906 \n",
|
1032 |
+
"7327 occurences_and_multimedia.csv https://zenodo.org/record/3477891 \n",
|
1033 |
+
"7328 occurences_and_multimedia.csv https://zenodo.org/record/3477891 \n",
|
1034 |
+
"7329 CAM.coll.images.batch5.csv https://zenodo.org/record/2684906 \n",
|
1035 |
+
"\n",
|
1036 |
+
" Sequence Taxonomic_Name Locality Sample_accession ... Stage Sex \\\n",
|
1037 |
+
"7326 2,890 Anartia fatima El Tirao, NaN ... NaN Female \n",
|
1038 |
+
"7327 2,890 Anartia fatima El Tirao, NaN ... NaN Female \n",
|
1039 |
+
"7328 2,890 Anartia fatima El Tirao, NaN ... NaN Female \n",
|
1040 |
+
"7329 2,890 Anartia fatima El Tirao, NaN ... NaN Female \n",
|
1041 |
+
"\n",
|
1042 |
+
" Unit_Type file_type record_number species subspecies genus \\\n",
|
1043 |
+
"7326 wild jpg 2684906 Anartia fatima NaN Anartia \n",
|
1044 |
+
"7327 wild jpg 3477891 Anartia fatima NaN Anartia \n",
|
1045 |
+
"7328 wild jpg 3477891 Anartia fatima NaN Anartia \n",
|
1046 |
+
"7329 wild jpg 2684906 Anartia fatima NaN Anartia \n",
|
1047 |
+
"\n",
|
1048 |
+
" file_url hybrid_stat \n",
|
1049 |
+
"7326 https://zenodo.org/record/2684906/files/CAM002... non-hybrid \n",
|
1050 |
+
"7327 https://zenodo.org/record/3477891/files/CAM002... non-hybrid \n",
|
1051 |
+
"7328 https://zenodo.org/record/3477891/files/CAM002... non-hybrid \n",
|
1052 |
+
"7329 https://zenodo.org/record/2684906/files/CAM002... non-hybrid \n",
|
1053 |
+
"\n",
|
1054 |
+
"[4 rows x 28 columns]"
|
1055 |
+
]
|
1056 |
+
},
|
1057 |
+
"execution_count": 23,
|
1058 |
+
"metadata": {},
|
1059 |
+
"output_type": "execute_result"
|
1060 |
+
}
|
1061 |
+
],
|
1062 |
+
"source": [
|
1063 |
+
"df.loc[df[\"species\"].isin(sp_hybrid_parents)]"
|
1064 |
+
]
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"cell_type": "code",
|
1068 |
+
"execution_count": 24,
|
1069 |
+
"metadata": {},
|
1070 |
+
"outputs": [
|
1071 |
+
{
|
1072 |
+
"data": {
|
1073 |
+
"text/html": [
|
1074 |
+
"<div>\n",
|
1075 |
+
"<style scoped>\n",
|
1076 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1077 |
+
" vertical-align: middle;\n",
|
1078 |
+
" }\n",
|
1079 |
+
"\n",
|
1080 |
+
" .dataframe tbody tr th {\n",
|
1081 |
+
" vertical-align: top;\n",
|
1082 |
+
" }\n",
|
1083 |
+
"\n",
|
1084 |
+
" .dataframe thead th {\n",
|
1085 |
+
" text-align: right;\n",
|
1086 |
+
" }\n",
|
1087 |
+
"</style>\n",
|
1088 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1089 |
+
" <thead>\n",
|
1090 |
+
" <tr style=\"text-align: right;\">\n",
|
1091 |
+
" <th></th>\n",
|
1092 |
+
" <th>CAMID</th>\n",
|
1093 |
+
" <th>X</th>\n",
|
1094 |
+
" <th>Image_name</th>\n",
|
1095 |
+
" <th>View</th>\n",
|
1096 |
+
" <th>zenodo_name</th>\n",
|
1097 |
+
" <th>zenodo_link</th>\n",
|
1098 |
+
" <th>Sequence</th>\n",
|
1099 |
+
" <th>Taxonomic_Name</th>\n",
|
1100 |
+
" <th>Locality</th>\n",
|
1101 |
+
" <th>Sample_accession</th>\n",
|
1102 |
+
" <th>...</th>\n",
|
1103 |
+
" <th>Stage</th>\n",
|
1104 |
+
" <th>Sex</th>\n",
|
1105 |
+
" <th>Unit_Type</th>\n",
|
1106 |
+
" <th>file_type</th>\n",
|
1107 |
+
" <th>record_number</th>\n",
|
1108 |
+
" <th>species</th>\n",
|
1109 |
+
" <th>subspecies</th>\n",
|
1110 |
+
" <th>genus</th>\n",
|
1111 |
+
" <th>file_url</th>\n",
|
1112 |
+
" <th>hybrid_stat</th>\n",
|
1113 |
+
" </tr>\n",
|
1114 |
+
" </thead>\n",
|
1115 |
+
" <tbody>\n",
|
1116 |
+
" </tbody>\n",
|
1117 |
+
"</table>\n",
|
1118 |
+
"<p>0 rows × 28 columns</p>\n",
|
1119 |
+
"</div>"
|
1120 |
+
],
|
1121 |
+
"text/plain": [
|
1122 |
+
"Empty DataFrame\n",
|
1123 |
+
"Columns: [CAMID, X, Image_name, View, zenodo_name, zenodo_link, Sequence, Taxonomic_Name, Locality, Sample_accession, Collected_by, Other_ID, Date, Dataset, Store, Brood, Death_Date, Cross_Type, Stage, Sex, Unit_Type, file_type, record_number, species, subspecies, genus, file_url, hybrid_stat]\n",
|
1124 |
+
"Index: []\n",
|
1125 |
+
"\n",
|
1126 |
+
"[0 rows x 28 columns]"
|
1127 |
+
]
|
1128 |
+
},
|
1129 |
+
"execution_count": 24,
|
1130 |
+
"metadata": {},
|
1131 |
+
"output_type": "execute_result"
|
1132 |
+
}
|
1133 |
+
],
|
1134 |
+
"source": [
|
1135 |
+
"df.loc[df[\"species\"].str.lower() == \"amathea\"] #not represented in the dataset"
|
1136 |
+
]
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"cell_type": "code",
|
1140 |
+
"execution_count": 25,
|
1141 |
+
"metadata": {},
|
1142 |
+
"outputs": [
|
1143 |
+
{
|
1144 |
+
"data": {
|
1145 |
+
"text/plain": [
|
1146 |
+
"Taxonomic_Name\n",
|
1147 |
+
"Anartia fatima x amathea 60\n",
|
1148 |
+
"Anartia fatima 4\n",
|
1149 |
+
"Name: count, dtype: int64"
|
1150 |
+
]
|
1151 |
+
},
|
1152 |
+
"execution_count": 25,
|
1153 |
+
"metadata": {},
|
1154 |
+
"output_type": "execute_result"
|
1155 |
+
}
|
1156 |
+
],
|
1157 |
+
"source": [
|
1158 |
+
"df.loc[df[\"genus\"] == \"Anartia\", \"Taxonomic_Name\"].value_counts()"
|
1159 |
+
]
|
1160 |
+
},
|
1161 |
+
{
|
1162 |
+
"cell_type": "code",
|
1163 |
+
"execution_count": 26,
|
1164 |
+
"metadata": {},
|
1165 |
+
"outputs": [
|
1166 |
+
{
|
1167 |
+
"data": {
|
1168 |
+
"text/html": [
|
1169 |
+
"<div>\n",
|
1170 |
+
"<style scoped>\n",
|
1171 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1172 |
+
" vertical-align: middle;\n",
|
1173 |
+
" }\n",
|
1174 |
+
"\n",
|
1175 |
+
" .dataframe tbody tr th {\n",
|
1176 |
+
" vertical-align: top;\n",
|
1177 |
+
" }\n",
|
1178 |
+
"\n",
|
1179 |
+
" .dataframe thead th {\n",
|
1180 |
+
" text-align: right;\n",
|
1181 |
+
" }\n",
|
1182 |
+
"</style>\n",
|
1183 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1184 |
+
" <thead>\n",
|
1185 |
+
" <tr style=\"text-align: right;\">\n",
|
1186 |
+
" <th></th>\n",
|
1187 |
+
" <th>CAMID</th>\n",
|
1188 |
+
" <th>X</th>\n",
|
1189 |
+
" <th>Image_name</th>\n",
|
1190 |
+
" <th>View</th>\n",
|
1191 |
+
" <th>zenodo_name</th>\n",
|
1192 |
+
" <th>zenodo_link</th>\n",
|
1193 |
+
" <th>Sequence</th>\n",
|
1194 |
+
" <th>Taxonomic_Name</th>\n",
|
1195 |
+
" <th>Locality</th>\n",
|
1196 |
+
" <th>Sample_accession</th>\n",
|
1197 |
+
" <th>...</th>\n",
|
1198 |
+
" <th>Stage</th>\n",
|
1199 |
+
" <th>Sex</th>\n",
|
1200 |
+
" <th>Unit_Type</th>\n",
|
1201 |
+
" <th>file_type</th>\n",
|
1202 |
+
" <th>record_number</th>\n",
|
1203 |
+
" <th>species</th>\n",
|
1204 |
+
" <th>subspecies</th>\n",
|
1205 |
+
" <th>genus</th>\n",
|
1206 |
+
" <th>file_url</th>\n",
|
1207 |
+
" <th>hybrid_stat</th>\n",
|
1208 |
+
" </tr>\n",
|
1209 |
+
" </thead>\n",
|
1210 |
+
" <tbody>\n",
|
1211 |
+
" <tr>\n",
|
1212 |
+
" <th>40498</th>\n",
|
1213 |
+
" <td>CAM043842</td>\n",
|
1214 |
+
" <td>32098</td>\n",
|
1215 |
+
" <td>CAM043842_hwv.JPG</td>\n",
|
1216 |
+
" <td>hindwing ventral</td>\n",
|
1217 |
+
" <td>batch2.Peru.image.names.Zenodo.csv</td>\n",
|
1218 |
+
" <td>https://zenodo.org/record/4287444</td>\n",
|
1219 |
+
" <td>43,842</td>\n",
|
1220 |
+
" <td>Catoblepia berecynthia</td>\n",
|
1221 |
+
" <td>B1prim3</td>\n",
|
1222 |
+
" <td>NaN</td>\n",
|
1223 |
+
" <td>...</td>\n",
|
1224 |
+
" <td>NaN</td>\n",
|
1225 |
+
" <td>NaN</td>\n",
|
1226 |
+
" <td>NaN</td>\n",
|
1227 |
+
" <td>jpg</td>\n",
|
1228 |
+
" <td>4287444</td>\n",
|
1229 |
+
" <td>Catoblepia berecynthia</td>\n",
|
1230 |
+
" <td>NaN</td>\n",
|
1231 |
+
" <td>Catoblepia</td>\n",
|
1232 |
+
" <td>https://zenodo.org/record/4287444/files/CAM043...</td>\n",
|
1233 |
+
" <td>None</td>\n",
|
1234 |
+
" </tr>\n",
|
1235 |
+
" <tr>\n",
|
1236 |
+
" <th>9192</th>\n",
|
1237 |
+
" <td>CAM008567</td>\n",
|
1238 |
+
" <td>46249</td>\n",
|
1239 |
+
" <td>CAM008567_v.JPG</td>\n",
|
1240 |
+
" <td>ventral</td>\n",
|
1241 |
+
" <td>occurences_and_multimedia.csv</td>\n",
|
1242 |
+
" <td>https://zenodo.org/record/3477891</td>\n",
|
1243 |
+
" <td>8,567</td>\n",
|
1244 |
+
" <td>Heliconius demeter</td>\n",
|
1245 |
+
" <td>Tarapoto-Yurimaguas (Km15), Tunel Cumbre, Fond...</td>\n",
|
1246 |
+
" <td>NaN</td>\n",
|
1247 |
+
" <td>...</td>\n",
|
1248 |
+
" <td>NaN</td>\n",
|
1249 |
+
" <td>Male</td>\n",
|
1250 |
+
" <td>wild</td>\n",
|
1251 |
+
" <td>jpg</td>\n",
|
1252 |
+
" <td>3477891</td>\n",
|
1253 |
+
" <td>Heliconius demeter</td>\n",
|
1254 |
+
" <td>NaN</td>\n",
|
1255 |
+
" <td>Heliconius</td>\n",
|
1256 |
+
" <td>https://zenodo.org/record/3477891/files/CAM008...</td>\n",
|
1257 |
+
" <td>None</td>\n",
|
1258 |
+
" </tr>\n",
|
1259 |
+
" <tr>\n",
|
1260 |
+
" <th>14127</th>\n",
|
1261 |
+
" <td>CAM010971</td>\n",
|
1262 |
+
" <td>27577</td>\n",
|
1263 |
+
" <td>CAM010971_d.CR2</td>\n",
|
1264 |
+
" <td>dorsal</td>\n",
|
1265 |
+
" <td>2001_2.broods.batch.1.csv</td>\n",
|
1266 |
+
" <td>https://zenodo.org/record/2549524</td>\n",
|
1267 |
+
" <td>10,971</td>\n",
|
1268 |
+
" <td>Heliconius sp.</td>\n",
|
1269 |
+
" <td>NaN</td>\n",
|
1270 |
+
" <td>NaN</td>\n",
|
1271 |
+
" <td>...</td>\n",
|
1272 |
+
" <td>NaN</td>\n",
|
1273 |
+
" <td>Male</td>\n",
|
1274 |
+
" <td>reared</td>\n",
|
1275 |
+
" <td>raw</td>\n",
|
1276 |
+
" <td>2549524</td>\n",
|
1277 |
+
" <td>Heliconius sp.</td>\n",
|
1278 |
+
" <td>NaN</td>\n",
|
1279 |
+
" <td>Heliconius</td>\n",
|
1280 |
+
" <td>https://zenodo.org/record/2549524/files/CAM010...</td>\n",
|
1281 |
+
" <td>None</td>\n",
|
1282 |
+
" </tr>\n",
|
1283 |
+
" <tr>\n",
|
1284 |
+
" <th>5315</th>\n",
|
1285 |
+
" <td>CAM000537</td>\n",
|
1286 |
+
" <td>6676</td>\n",
|
1287 |
+
" <td>CAM000537_d.JPG</td>\n",
|
1288 |
+
" <td>dorsal</td>\n",
|
1289 |
+
" <td>CAM.coll.images.batch3.csv</td>\n",
|
1290 |
+
" <td>https://zenodo.org/record/2682458</td>\n",
|
1291 |
+
" <td>537</td>\n",
|
1292 |
+
" <td>Heliconius melpomene ssp. rosina</td>\n",
|
1293 |
+
" <td>Pipeline road 4km,</td>\n",
|
1294 |
+
" <td>NaN</td>\n",
|
1295 |
+
" <td>...</td>\n",
|
1296 |
+
" <td>NaN</td>\n",
|
1297 |
+
" <td>Male</td>\n",
|
1298 |
+
" <td>wild</td>\n",
|
1299 |
+
" <td>jpg</td>\n",
|
1300 |
+
" <td>2682458</td>\n",
|
1301 |
+
" <td>Heliconius melpomene</td>\n",
|
1302 |
+
" <td>rosina</td>\n",
|
1303 |
+
" <td>Heliconius</td>\n",
|
1304 |
+
" <td>https://zenodo.org/record/2682458/files/CAM000...</td>\n",
|
1305 |
+
" <td>non-hybrid</td>\n",
|
1306 |
+
" </tr>\n",
|
1307 |
+
" <tr>\n",
|
1308 |
+
" <th>585</th>\n",
|
1309 |
+
" <td>19N0204</td>\n",
|
1310 |
+
" <td>19553</td>\n",
|
1311 |
+
" <td>19N0204_d.JPG</td>\n",
|
1312 |
+
" <td>dorsal</td>\n",
|
1313 |
+
" <td>0.sheffield.ps.nn.ikiam.batch1.csv</td>\n",
|
1314 |
+
" <td>https://zenodo.org/record/4288311</td>\n",
|
1315 |
+
" <td>204</td>\n",
|
1316 |
+
" <td>Heliconius erato ssp. lativitta</td>\n",
|
1317 |
+
" <td>Ikiam Mariposario</td>\n",
|
1318 |
+
" <td>NaN</td>\n",
|
1319 |
+
" <td>...</td>\n",
|
1320 |
+
" <td>NaN</td>\n",
|
1321 |
+
" <td>Male</td>\n",
|
1322 |
+
" <td>reared</td>\n",
|
1323 |
+
" <td>jpg</td>\n",
|
1324 |
+
" <td>4288311</td>\n",
|
1325 |
+
" <td>Heliconius erato</td>\n",
|
1326 |
+
" <td>lativitta</td>\n",
|
1327 |
+
" <td>Heliconius</td>\n",
|
1328 |
+
" <td>https://zenodo.org/record/4288311/files/19N020...</td>\n",
|
1329 |
+
" <td>non-hybrid</td>\n",
|
1330 |
+
" </tr>\n",
|
1331 |
+
" <tr>\n",
|
1332 |
+
" <th>38875</th>\n",
|
1333 |
+
" <td>CAM043366</td>\n",
|
1334 |
+
" <td>30469</td>\n",
|
1335 |
+
" <td>CAM043366_v.CR2</td>\n",
|
1336 |
+
" <td>ventral</td>\n",
|
1337 |
+
" <td>batch1.Peru.image.names.Zenodo.csv</td>\n",
|
1338 |
+
" <td>https://zenodo.org/record/3569598</td>\n",
|
1339 |
+
" <td>43,366</td>\n",
|
1340 |
+
" <td>Eunica pusilla</td>\n",
|
1341 |
+
" <td>B6rec3</td>\n",
|
1342 |
+
" <td>NaN</td>\n",
|
1343 |
+
" <td>...</td>\n",
|
1344 |
+
" <td>NaN</td>\n",
|
1345 |
+
" <td>NaN</td>\n",
|
1346 |
+
" <td>NaN</td>\n",
|
1347 |
+
" <td>raw</td>\n",
|
1348 |
+
" <td>3569598</td>\n",
|
1349 |
+
" <td>Eunica pusilla</td>\n",
|
1350 |
+
" <td>NaN</td>\n",
|
1351 |
+
" <td>Eunica</td>\n",
|
1352 |
+
" <td>https://zenodo.org/record/3569598/files/CAM043...</td>\n",
|
1353 |
+
" <td>None</td>\n",
|
1354 |
+
" </tr>\n",
|
1355 |
+
" <tr>\n",
|
1356 |
+
" <th>19226</th>\n",
|
1357 |
+
" <td>CAM016687</td>\n",
|
1358 |
+
" <td>18917</td>\n",
|
1359 |
+
" <td>CAM016687_d.CR2</td>\n",
|
1360 |
+
" <td>dorsal</td>\n",
|
1361 |
+
" <td>CAM.coll.PS.list.individuals.haplotagging.new....</td>\n",
|
1362 |
+
" <td>https://zenodo.org/record/4153502</td>\n",
|
1363 |
+
" <td>16,687</td>\n",
|
1364 |
+
" <td>Heliconius melpomene ssp. plesseni</td>\n",
|
1365 |
+
" <td>El Topo, Baños - Puyo road,</td>\n",
|
1366 |
+
" <td>SRS7540355</td>\n",
|
1367 |
+
" <td>...</td>\n",
|
1368 |
+
" <td>NaN</td>\n",
|
1369 |
+
" <td>Male</td>\n",
|
1370 |
+
" <td>wild</td>\n",
|
1371 |
+
" <td>raw</td>\n",
|
1372 |
+
" <td>4153502</td>\n",
|
1373 |
+
" <td>Heliconius melpomene</td>\n",
|
1374 |
+
" <td>plesseni</td>\n",
|
1375 |
+
" <td>Heliconius</td>\n",
|
1376 |
+
" <td>https://zenodo.org/record/4153502/files/CAM016...</td>\n",
|
1377 |
+
" <td>non-hybrid</td>\n",
|
1378 |
+
" </tr>\n",
|
1379 |
+
" </tbody>\n",
|
1380 |
+
"</table>\n",
|
1381 |
+
"<p>7 rows × 28 columns</p>\n",
|
1382 |
+
"</div>"
|
1383 |
+
],
|
1384 |
+
"text/plain": [
|
1385 |
+
" CAMID X Image_name View \\\n",
|
1386 |
+
"40498 CAM043842 32098 CAM043842_hwv.JPG hindwing ventral \n",
|
1387 |
+
"9192 CAM008567 46249 CAM008567_v.JPG ventral \n",
|
1388 |
+
"14127 CAM010971 27577 CAM010971_d.CR2 dorsal \n",
|
1389 |
+
"5315 CAM000537 6676 CAM000537_d.JPG dorsal \n",
|
1390 |
+
"585 19N0204 19553 19N0204_d.JPG dorsal \n",
|
1391 |
+
"38875 CAM043366 30469 CAM043366_v.CR2 ventral \n",
|
1392 |
+
"19226 CAM016687 18917 CAM016687_d.CR2 dorsal \n",
|
1393 |
+
"\n",
|
1394 |
+
" zenodo_name \\\n",
|
1395 |
+
"40498 batch2.Peru.image.names.Zenodo.csv \n",
|
1396 |
+
"9192 occurences_and_multimedia.csv \n",
|
1397 |
+
"14127 2001_2.broods.batch.1.csv \n",
|
1398 |
+
"5315 CAM.coll.images.batch3.csv \n",
|
1399 |
+
"585 0.sheffield.ps.nn.ikiam.batch1.csv \n",
|
1400 |
+
"38875 batch1.Peru.image.names.Zenodo.csv \n",
|
1401 |
+
"19226 CAM.coll.PS.list.individuals.haplotagging.new.... \n",
|
1402 |
+
"\n",
|
1403 |
+
" zenodo_link Sequence \\\n",
|
1404 |
+
"40498 https://zenodo.org/record/4287444 43,842 \n",
|
1405 |
+
"9192 https://zenodo.org/record/3477891 8,567 \n",
|
1406 |
+
"14127 https://zenodo.org/record/2549524 10,971 \n",
|
1407 |
+
"5315 https://zenodo.org/record/2682458 537 \n",
|
1408 |
+
"585 https://zenodo.org/record/4288311 204 \n",
|
1409 |
+
"38875 https://zenodo.org/record/3569598 43,366 \n",
|
1410 |
+
"19226 https://zenodo.org/record/4153502 16,687 \n",
|
1411 |
+
"\n",
|
1412 |
+
" Taxonomic_Name \\\n",
|
1413 |
+
"40498 Catoblepia berecynthia \n",
|
1414 |
+
"9192 Heliconius demeter \n",
|
1415 |
+
"14127 Heliconius sp. \n",
|
1416 |
+
"5315 Heliconius melpomene ssp. rosina \n",
|
1417 |
+
"585 Heliconius erato ssp. lativitta \n",
|
1418 |
+
"38875 Eunica pusilla \n",
|
1419 |
+
"19226 Heliconius melpomene ssp. plesseni \n",
|
1420 |
+
"\n",
|
1421 |
+
" Locality Sample_accession \\\n",
|
1422 |
+
"40498 B1prim3 NaN \n",
|
1423 |
+
"9192 Tarapoto-Yurimaguas (Km15), Tunel Cumbre, Fond... NaN \n",
|
1424 |
+
"14127 NaN NaN \n",
|
1425 |
+
"5315 Pipeline road 4km, NaN \n",
|
1426 |
+
"585 Ikiam Mariposario NaN \n",
|
1427 |
+
"38875 B6rec3 NaN \n",
|
1428 |
+
"19226 El Topo, Baños - Puyo road, SRS7540355 \n",
|
1429 |
+
"\n",
|
1430 |
+
" ... Stage Sex Unit_Type file_type record_number \\\n",
|
1431 |
+
"40498 ... NaN NaN NaN jpg 4287444 \n",
|
1432 |
+
"9192 ... NaN Male wild jpg 3477891 \n",
|
1433 |
+
"14127 ... NaN Male reared raw 2549524 \n",
|
1434 |
+
"5315 ... NaN Male wild jpg 2682458 \n",
|
1435 |
+
"585 ... NaN Male reared jpg 4288311 \n",
|
1436 |
+
"38875 ... NaN NaN NaN raw 3569598 \n",
|
1437 |
+
"19226 ... NaN Male wild raw 4153502 \n",
|
1438 |
+
"\n",
|
1439 |
+
" species subspecies genus \\\n",
|
1440 |
+
"40498 Catoblepia berecynthia NaN Catoblepia \n",
|
1441 |
+
"9192 Heliconius demeter NaN Heliconius \n",
|
1442 |
+
"14127 Heliconius sp. NaN Heliconius \n",
|
1443 |
+
"5315 Heliconius melpomene rosina Heliconius \n",
|
1444 |
+
"585 Heliconius erato lativitta Heliconius \n",
|
1445 |
+
"38875 Eunica pusilla NaN Eunica \n",
|
1446 |
+
"19226 Heliconius melpomene plesseni Heliconius \n",
|
1447 |
+
"\n",
|
1448 |
+
" file_url hybrid_stat \n",
|
1449 |
+
"40498 https://zenodo.org/record/4287444/files/CAM043... None \n",
|
1450 |
+
"9192 https://zenodo.org/record/3477891/files/CAM008... None \n",
|
1451 |
+
"14127 https://zenodo.org/record/2549524/files/CAM010... None \n",
|
1452 |
+
"5315 https://zenodo.org/record/2682458/files/CAM000... non-hybrid \n",
|
1453 |
+
"585 https://zenodo.org/record/4288311/files/19N020... non-hybrid \n",
|
1454 |
+
"38875 https://zenodo.org/record/3569598/files/CAM043... None \n",
|
1455 |
+
"19226 https://zenodo.org/record/4153502/files/CAM016... non-hybrid \n",
|
1456 |
+
"\n",
|
1457 |
+
"[7 rows x 28 columns]"
|
1458 |
+
]
|
1459 |
+
},
|
1460 |
+
"execution_count": 26,
|
1461 |
+
"metadata": {},
|
1462 |
+
"output_type": "execute_result"
|
1463 |
+
}
|
1464 |
+
],
|
1465 |
+
"source": [
|
1466 |
+
"df.sample(7)"
|
1467 |
+
]
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"cell_type": "markdown",
|
1471 |
+
"metadata": {},
|
1472 |
+
"source": [
|
1473 |
+
"## Investigate entries with no Taxonomic Information"
|
1474 |
+
]
|
1475 |
+
},
|
1476 |
+
{
|
1477 |
+
"cell_type": "code",
|
1478 |
+
"execution_count": 27,
|
1479 |
+
"metadata": {},
|
1480 |
+
"outputs": [
|
1481 |
+
{
|
1482 |
+
"name": "stdout",
|
1483 |
+
"output_type": "stream",
|
1484 |
+
"text": [
|
1485 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
1486 |
+
"Index: 3886 entries, 0 to 49350\n",
|
1487 |
+
"Data columns (total 28 columns):\n",
|
1488 |
+
" # Column Non-Null Count Dtype \n",
|
1489 |
+
"--- ------ -------------- ----- \n",
|
1490 |
+
" 0 CAMID 3886 non-null object\n",
|
1491 |
+
" 1 X 3886 non-null int64 \n",
|
1492 |
+
" 2 Image_name 3886 non-null object\n",
|
1493 |
+
" 3 View 3594 non-null object\n",
|
1494 |
+
" 4 zenodo_name 3886 non-null object\n",
|
1495 |
+
" 5 zenodo_link 3886 non-null object\n",
|
1496 |
+
" 6 Sequence 2951 non-null object\n",
|
1497 |
+
" 7 Taxonomic_Name 0 non-null object\n",
|
1498 |
+
" 8 Locality 70 non-null object\n",
|
1499 |
+
" 9 Sample_accession 24 non-null object\n",
|
1500 |
+
" 10 Collected_by 0 non-null object\n",
|
1501 |
+
" 11 Other_ID 30 non-null object\n",
|
1502 |
+
" 12 Date 70 non-null object\n",
|
1503 |
+
" 13 Dataset 461 non-null object\n",
|
1504 |
+
" 14 Store 345 non-null object\n",
|
1505 |
+
" 15 Brood 5 non-null object\n",
|
1506 |
+
" 16 Death_Date 2 non-null object\n",
|
1507 |
+
" 17 Cross_Type 0 non-null object\n",
|
1508 |
+
" 18 Stage 9 non-null object\n",
|
1509 |
+
" 19 Sex 35 non-null object\n",
|
1510 |
+
" 20 Unit_Type 47 non-null object\n",
|
1511 |
+
" 21 file_type 3886 non-null object\n",
|
1512 |
+
" 22 record_number 3886 non-null int64 \n",
|
1513 |
+
" 23 species 0 non-null object\n",
|
1514 |
+
" 24 subspecies 0 non-null object\n",
|
1515 |
+
" 25 genus 0 non-null object\n",
|
1516 |
+
" 26 file_url 3886 non-null object\n",
|
1517 |
+
" 27 hybrid_stat 0 non-null object\n",
|
1518 |
+
"dtypes: int64(2), object(26)\n",
|
1519 |
+
"memory usage: 880.4+ KB\n"
|
1520 |
+
]
|
1521 |
+
}
|
1522 |
+
],
|
1523 |
+
"source": [
|
1524 |
+
"df.loc[df.Taxonomic_Name.isna()].info()"
|
1525 |
+
]
|
1526 |
+
},
|
1527 |
+
{
|
1528 |
+
"cell_type": "markdown",
|
1529 |
+
"metadata": {},
|
1530 |
+
"source": [
|
1531 |
+
"Wow, there are a surprising number of images with no taxonomic information."
|
1532 |
+
]
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"cell_type": "code",
|
1536 |
+
"execution_count": 28,
|
1537 |
+
"metadata": {},
|
1538 |
+
"outputs": [
|
1539 |
+
{
|
1540 |
+
"data": {
|
1541 |
+
"text/plain": [
|
1542 |
+
"0"
|
1543 |
+
]
|
1544 |
+
},
|
1545 |
+
"execution_count": 28,
|
1546 |
+
"metadata": {},
|
1547 |
+
"output_type": "execute_result"
|
1548 |
+
}
|
1549 |
+
],
|
1550 |
+
"source": [
|
1551 |
+
"no_taxa_cams = list(df.loc[df[\"Taxonomic_Name\"].isna(), \"CAMID\"].unique())\n",
|
1552 |
+
"no_taxa_entries = list(df.loc[df[\"Taxonomic_Name\"].isna(), \"X\"])\n",
|
1553 |
+
"\n",
|
1554 |
+
"no_taxa_cam_match = [camid for camid in list(df.loc[~df[\"X\"].isin(no_taxa_entries), \"CAMID\"]) if camid in no_taxa_cams]\n",
|
1555 |
+
"len(no_taxa_cam_match)"
|
1556 |
+
]
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"cell_type": "markdown",
|
1560 |
+
"metadata": {},
|
1561 |
+
"source": [
|
1562 |
+
"There are no CAMIDs that these can match to for taxonomic info recovery. Last option is to check the records they come from, then we'll remove them."
|
1563 |
+
]
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"cell_type": "code",
|
1567 |
+
"execution_count": 29,
|
1568 |
+
"metadata": {},
|
1569 |
+
"outputs": [
|
1570 |
+
{
|
1571 |
+
"name": "stdout",
|
1572 |
+
"output_type": "stream",
|
1573 |
+
"text": [
|
1574 |
+
"21\n"
|
1575 |
+
]
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"data": {
|
1579 |
+
"text/plain": [
|
1580 |
+
"zenodo_link\n",
|
1581 |
+
"https://zenodo.org/record/5526257 1324\n",
|
1582 |
+
"https://zenodo.org/record/2554218 492\n",
|
1583 |
+
"https://zenodo.org/record/4288311 486\n",
|
1584 |
+
"https://zenodo.org/record/2555086 440\n",
|
1585 |
+
"https://zenodo.org/record/5731587 388\n",
|
1586 |
+
"Name: count, dtype: int64"
|
1587 |
+
]
|
1588 |
+
},
|
1589 |
+
"execution_count": 29,
|
1590 |
+
"metadata": {},
|
1591 |
+
"output_type": "execute_result"
|
1592 |
+
}
|
1593 |
+
],
|
1594 |
+
"source": [
|
1595 |
+
"print(df.loc[df[\"X\"].isin(no_taxa_entries), \"record_number\"].nunique())\n",
|
1596 |
+
"df.loc[df[\"X\"].isin(no_taxa_entries), \"zenodo_link\"].value_counts()[:5]"
|
1597 |
+
]
|
1598 |
+
},
|
1599 |
+
{
|
1600 |
+
"cell_type": "markdown",
|
1601 |
+
"metadata": {},
|
1602 |
+
"source": [
|
1603 |
+
"These are across most of the records. We can check the one with the most, but otherwise they should likely be dropped (can save them in a separate CSV in case they are to be assessed at a later point).\n",
|
1604 |
+
"\n",
|
1605 |
+
"The first appear to be all _Heliconius erato ssp. cyrbia_, so those could be realigned.\n",
|
1606 |
+
"\n",
|
1607 |
+
"The second indicates all _Heliconius erato_.\n",
|
1608 |
+
"\n",
|
1609 |
+
"The third is a mix, so not resolvable without an expert.\n",
|
1610 |
+
"\n",
|
1611 |
+
"It seems record 2555086 is all bred specimens of _Heliconius erato demophoon_.\n",
|
1612 |
+
"\n",
|
1613 |
+
"The fifth record is a mix, and not all are labeled in the excel file (in fact, there's a lot of red which is probably why they were excluded)."
|
1614 |
+
]
|
1615 |
+
},
|
1616 |
+
{
|
1617 |
+
"cell_type": "code",
|
1618 |
+
"execution_count": 30,
|
1619 |
+
"metadata": {},
|
1620 |
+
"outputs": [
|
1621 |
+
{
|
1622 |
+
"name": "stdout",
|
1623 |
+
"output_type": "stream",
|
1624 |
+
"text": [
|
1625 |
+
"<class 'pandas.core.series.Series'>\n",
|
1626 |
+
"Index: 1324 entries, 45868 to 47191\n",
|
1627 |
+
"Series name: Taxonomic_Name\n",
|
1628 |
+
"Non-Null Count Dtype \n",
|
1629 |
+
"-------------- ----- \n",
|
1630 |
+
"0 non-null object\n",
|
1631 |
+
"dtypes: object(1)\n",
|
1632 |
+
"memory usage: 20.7+ KB\n"
|
1633 |
+
]
|
1634 |
+
}
|
1635 |
+
],
|
1636 |
+
"source": [
|
1637 |
+
"df.loc[df[\"record_number\"] == 5526257, \"Taxonomic_Name\"].info()"
|
1638 |
+
]
|
1639 |
+
},
|
1640 |
+
{
|
1641 |
+
"cell_type": "markdown",
|
1642 |
+
"metadata": {},
|
1643 |
+
"source": [
|
1644 |
+
"Ah, so these are all null, but all are of the same subspecies, so they can be labeled."
|
1645 |
+
]
|
1646 |
+
},
|
1647 |
+
{
|
1648 |
+
"cell_type": "code",
|
1649 |
+
"execution_count": 31,
|
1650 |
+
"metadata": {},
|
1651 |
+
"outputs": [
|
1652 |
+
{
|
1653 |
+
"data": {
|
1654 |
+
"text/plain": [
|
1655 |
+
"4"
|
1656 |
+
]
|
1657 |
+
},
|
1658 |
+
"execution_count": 31,
|
1659 |
+
"metadata": {},
|
1660 |
+
"output_type": "execute_result"
|
1661 |
+
}
|
1662 |
+
],
|
1663 |
+
"source": [
|
1664 |
+
"pot_single_taxa_records = []\n",
|
1665 |
+
"for record_num in (df.loc[df[\"X\"].isin(no_taxa_entries), \"record_number\"].unique()):\n",
|
1666 |
+
" temp = df.loc[df[\"record_number\"] == record_num]\n",
|
1667 |
+
" if temp.loc[temp[\"Taxonomic_Name\"].notna()].shape[0] == 0:\n",
|
1668 |
+
" pot_single_taxa_records.append(record_num)\n",
|
1669 |
+
"\n",
|
1670 |
+
"len(pot_single_taxa_records)"
|
1671 |
+
]
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"cell_type": "code",
|
1675 |
+
"execution_count": 32,
|
1676 |
+
"metadata": {},
|
1677 |
+
"outputs": [
|
1678 |
+
{
|
1679 |
+
"data": {
|
1680 |
+
"text/plain": [
|
1681 |
+
"[5731587, 5526257, 2554218, 2555086]"
|
1682 |
+
]
|
1683 |
+
},
|
1684 |
+
"execution_count": 32,
|
1685 |
+
"metadata": {},
|
1686 |
+
"output_type": "execute_result"
|
1687 |
+
}
|
1688 |
+
],
|
1689 |
+
"source": [
|
1690 |
+
"pot_single_taxa_records"
|
1691 |
+
]
|
1692 |
+
},
|
1693 |
+
{
|
1694 |
+
"cell_type": "code",
|
1695 |
+
"execution_count": 33,
|
1696 |
+
"metadata": {},
|
1697 |
+
"outputs": [
|
1698 |
+
{
|
1699 |
+
"data": {
|
1700 |
+
"text/html": [
|
1701 |
+
"<div>\n",
|
1702 |
+
"<style scoped>\n",
|
1703 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1704 |
+
" vertical-align: middle;\n",
|
1705 |
+
" }\n",
|
1706 |
+
"\n",
|
1707 |
+
" .dataframe tbody tr th {\n",
|
1708 |
+
" vertical-align: top;\n",
|
1709 |
+
" }\n",
|
1710 |
+
"\n",
|
1711 |
+
" .dataframe thead th {\n",
|
1712 |
+
" text-align: right;\n",
|
1713 |
+
" }\n",
|
1714 |
+
"</style>\n",
|
1715 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1716 |
+
" <thead>\n",
|
1717 |
+
" <tr style=\"text-align: right;\">\n",
|
1718 |
+
" <th></th>\n",
|
1719 |
+
" <th>CAMID</th>\n",
|
1720 |
+
" <th>X</th>\n",
|
1721 |
+
" <th>Image_name</th>\n",
|
1722 |
+
" <th>View</th>\n",
|
1723 |
+
" <th>zenodo_name</th>\n",
|
1724 |
+
" <th>zenodo_link</th>\n",
|
1725 |
+
" <th>Sequence</th>\n",
|
1726 |
+
" <th>Taxonomic_Name</th>\n",
|
1727 |
+
" <th>Locality</th>\n",
|
1728 |
+
" <th>Sample_accession</th>\n",
|
1729 |
+
" <th>...</th>\n",
|
1730 |
+
" <th>Stage</th>\n",
|
1731 |
+
" <th>Sex</th>\n",
|
1732 |
+
" <th>Unit_Type</th>\n",
|
1733 |
+
" <th>file_type</th>\n",
|
1734 |
+
" <th>record_number</th>\n",
|
1735 |
+
" <th>species</th>\n",
|
1736 |
+
" <th>subspecies</th>\n",
|
1737 |
+
" <th>genus</th>\n",
|
1738 |
+
" <th>file_url</th>\n",
|
1739 |
+
" <th>hybrid_stat</th>\n",
|
1740 |
+
" </tr>\n",
|
1741 |
+
" </thead>\n",
|
1742 |
+
" <tbody>\n",
|
1743 |
+
" <tr>\n",
|
1744 |
+
" <th>46747</th>\n",
|
1745 |
+
" <td>CAM045219</td>\n",
|
1746 |
+
" <td>43439</td>\n",
|
1747 |
+
" <td>CAM045219_d.JPG</td>\n",
|
1748 |
+
" <td>dorsal</td>\n",
|
1749 |
+
" <td>image.names.cook.island.erato.csv</td>\n",
|
1750 |
+
" <td>https://zenodo.org/record/5526257</td>\n",
|
1751 |
+
" <td>45,219</td>\n",
|
1752 |
+
" <td>NaN</td>\n",
|
1753 |
+
" <td>NaN</td>\n",
|
1754 |
+
" <td>NaN</td>\n",
|
1755 |
+
" <td>...</td>\n",
|
1756 |
+
" <td>NaN</td>\n",
|
1757 |
+
" <td>NaN</td>\n",
|
1758 |
+
" <td>NaN</td>\n",
|
1759 |
+
" <td>jpg</td>\n",
|
1760 |
+
" <td>5526257</td>\n",
|
1761 |
+
" <td>NaN</td>\n",
|
1762 |
+
" <td>NaN</td>\n",
|
1763 |
+
" <td>NaN</td>\n",
|
1764 |
+
" <td>https://zenodo.org/record/5526257/files/CAM045...</td>\n",
|
1765 |
+
" <td>None</td>\n",
|
1766 |
+
" </tr>\n",
|
1767 |
+
" <tr>\n",
|
1768 |
+
" <th>47062</th>\n",
|
1769 |
+
" <td>CAM045298</td>\n",
|
1770 |
+
" <td>43756</td>\n",
|
1771 |
+
" <td>CAM045298_v.CR2</td>\n",
|
1772 |
+
" <td>ventral</td>\n",
|
1773 |
+
" <td>image.names.cook.island.erato.csv</td>\n",
|
1774 |
+
" <td>https://zenodo.org/record/5526257</td>\n",
|
1775 |
+
" <td>45,298</td>\n",
|
1776 |
+
" <td>NaN</td>\n",
|
1777 |
+
" <td>NaN</td>\n",
|
1778 |
+
" <td>NaN</td>\n",
|
1779 |
+
" <td>...</td>\n",
|
1780 |
+
" <td>NaN</td>\n",
|
1781 |
+
" <td>NaN</td>\n",
|
1782 |
+
" <td>NaN</td>\n",
|
1783 |
+
" <td>raw</td>\n",
|
1784 |
+
" <td>5526257</td>\n",
|
1785 |
+
" <td>NaN</td>\n",
|
1786 |
+
" <td>NaN</td>\n",
|
1787 |
+
" <td>NaN</td>\n",
|
1788 |
+
" <td>https://zenodo.org/record/5526257/files/CAM045...</td>\n",
|
1789 |
+
" <td>None</td>\n",
|
1790 |
+
" </tr>\n",
|
1791 |
+
" <tr>\n",
|
1792 |
+
" <th>37255</th>\n",
|
1793 |
+
" <td>CAM042050</td>\n",
|
1794 |
+
" <td>43982</td>\n",
|
1795 |
+
" <td>CAM042050_d.JPG</td>\n",
|
1796 |
+
" <td>dorsal</td>\n",
|
1797 |
+
" <td>Collection_August2019.csv</td>\n",
|
1798 |
+
" <td>https://zenodo.org/record/5731587</td>\n",
|
1799 |
+
" <td>42,050</td>\n",
|
1800 |
+
" <td>NaN</td>\n",
|
1801 |
+
" <td>NaN</td>\n",
|
1802 |
+
" <td>NaN</td>\n",
|
1803 |
+
" <td>...</td>\n",
|
1804 |
+
" <td>NaN</td>\n",
|
1805 |
+
" <td>NaN</td>\n",
|
1806 |
+
" <td>NaN</td>\n",
|
1807 |
+
" <td>jpg</td>\n",
|
1808 |
+
" <td>5731587</td>\n",
|
1809 |
+
" <td>NaN</td>\n",
|
1810 |
+
" <td>NaN</td>\n",
|
1811 |
+
" <td>NaN</td>\n",
|
1812 |
+
" <td>https://zenodo.org/record/5731587/files/CAM042...</td>\n",
|
1813 |
+
" <td>None</td>\n",
|
1814 |
+
" </tr>\n",
|
1815 |
+
" <tr>\n",
|
1816 |
+
" <th>46992</th>\n",
|
1817 |
+
" <td>CAM045281</td>\n",
|
1818 |
+
" <td>43687</td>\n",
|
1819 |
+
" <td>CAM045281_d.JPG</td>\n",
|
1820 |
+
" <td>dorsal</td>\n",
|
1821 |
+
" <td>image.names.cook.island.erato.csv</td>\n",
|
1822 |
+
" <td>https://zenodo.org/record/5526257</td>\n",
|
1823 |
+
" <td>45,281</td>\n",
|
1824 |
+
" <td>NaN</td>\n",
|
1825 |
+
" <td>NaN</td>\n",
|
1826 |
+
" <td>NaN</td>\n",
|
1827 |
+
" <td>...</td>\n",
|
1828 |
+
" <td>NaN</td>\n",
|
1829 |
+
" <td>NaN</td>\n",
|
1830 |
+
" <td>NaN</td>\n",
|
1831 |
+
" <td>jpg</td>\n",
|
1832 |
+
" <td>5526257</td>\n",
|
1833 |
+
" <td>NaN</td>\n",
|
1834 |
+
" <td>NaN</td>\n",
|
1835 |
+
" <td>NaN</td>\n",
|
1836 |
+
" <td>https://zenodo.org/record/5526257/files/CAM045...</td>\n",
|
1837 |
+
" <td>None</td>\n",
|
1838 |
+
" </tr>\n",
|
1839 |
+
" <tr>\n",
|
1840 |
+
" <th>49106</th>\n",
|
1841 |
+
" <td>F901</td>\n",
|
1842 |
+
" <td>38167</td>\n",
|
1843 |
+
" <td>F901_d.CR2</td>\n",
|
1844 |
+
" <td>dorsal</td>\n",
|
1845 |
+
" <td>Anniina.Mattila.Bred.F.csv</td>\n",
|
1846 |
+
" <td>https://zenodo.org/record/2555086</td>\n",
|
1847 |
+
" <td>NaN</td>\n",
|
1848 |
+
" <td>NaN</td>\n",
|
1849 |
+
" <td>NaN</td>\n",
|
1850 |
+
" <td>NaN</td>\n",
|
1851 |
+
" <td>...</td>\n",
|
1852 |
+
" <td>NaN</td>\n",
|
1853 |
+
" <td>NaN</td>\n",
|
1854 |
+
" <td>NaN</td>\n",
|
1855 |
+
" <td>raw</td>\n",
|
1856 |
+
" <td>2555086</td>\n",
|
1857 |
+
" <td>NaN</td>\n",
|
1858 |
+
" <td>NaN</td>\n",
|
1859 |
+
" <td>NaN</td>\n",
|
1860 |
+
" <td>https://zenodo.org/record/2555086/files/F901_d...</td>\n",
|
1861 |
+
" <td>None</td>\n",
|
1862 |
+
" </tr>\n",
|
1863 |
+
" </tbody>\n",
|
1864 |
+
"</table>\n",
|
1865 |
+
"<p>5 rows × 28 columns</p>\n",
|
1866 |
+
"</div>"
|
1867 |
+
],
|
1868 |
+
"text/plain": [
|
1869 |
+
" CAMID X Image_name View \\\n",
|
1870 |
+
"46747 CAM045219 43439 CAM045219_d.JPG dorsal \n",
|
1871 |
+
"47062 CAM045298 43756 CAM045298_v.CR2 ventral \n",
|
1872 |
+
"37255 CAM042050 43982 CAM042050_d.JPG dorsal \n",
|
1873 |
+
"46992 CAM045281 43687 CAM045281_d.JPG dorsal \n",
|
1874 |
+
"49106 F901 38167 F901_d.CR2 dorsal \n",
|
1875 |
+
"\n",
|
1876 |
+
" zenodo_name zenodo_link \\\n",
|
1877 |
+
"46747 image.names.cook.island.erato.csv https://zenodo.org/record/5526257 \n",
|
1878 |
+
"47062 image.names.cook.island.erato.csv https://zenodo.org/record/5526257 \n",
|
1879 |
+
"37255 Collection_August2019.csv https://zenodo.org/record/5731587 \n",
|
1880 |
+
"46992 image.names.cook.island.erato.csv https://zenodo.org/record/5526257 \n",
|
1881 |
+
"49106 Anniina.Mattila.Bred.F.csv https://zenodo.org/record/2555086 \n",
|
1882 |
+
"\n",
|
1883 |
+
" Sequence Taxonomic_Name Locality Sample_accession ... Stage Sex \\\n",
|
1884 |
+
"46747 45,219 NaN NaN NaN ... NaN NaN \n",
|
1885 |
+
"47062 45,298 NaN NaN NaN ... NaN NaN \n",
|
1886 |
+
"37255 42,050 NaN NaN NaN ... NaN NaN \n",
|
1887 |
+
"46992 45,281 NaN NaN NaN ... NaN NaN \n",
|
1888 |
+
"49106 NaN NaN NaN NaN ... NaN NaN \n",
|
1889 |
+
"\n",
|
1890 |
+
" Unit_Type file_type record_number species subspecies genus \\\n",
|
1891 |
+
"46747 NaN jpg 5526257 NaN NaN NaN \n",
|
1892 |
+
"47062 NaN raw 5526257 NaN NaN NaN \n",
|
1893 |
+
"37255 NaN jpg 5731587 NaN NaN NaN \n",
|
1894 |
+
"46992 NaN jpg 5526257 NaN NaN NaN \n",
|
1895 |
+
"49106 NaN raw 2555086 NaN NaN NaN \n",
|
1896 |
+
"\n",
|
1897 |
+
" file_url hybrid_stat \n",
|
1898 |
+
"46747 https://zenodo.org/record/5526257/files/CAM045... None \n",
|
1899 |
+
"47062 https://zenodo.org/record/5526257/files/CAM045... None \n",
|
1900 |
+
"37255 https://zenodo.org/record/5731587/files/CAM042... None \n",
|
1901 |
+
"46992 https://zenodo.org/record/5526257/files/CAM045... None \n",
|
1902 |
+
"49106 https://zenodo.org/record/2555086/files/F901_d... None \n",
|
1903 |
+
"\n",
|
1904 |
+
"[5 rows x 28 columns]"
|
1905 |
+
]
|
1906 |
+
},
|
1907 |
+
"execution_count": 33,
|
1908 |
+
"metadata": {},
|
1909 |
+
"output_type": "execute_result"
|
1910 |
+
}
|
1911 |
+
],
|
1912 |
+
"source": [
|
1913 |
+
"df.loc[df.record_number.isin(pot_single_taxa_records)].sample(5)"
|
1914 |
+
]
|
1915 |
+
},
|
1916 |
+
{
|
1917 |
+
"cell_type": "markdown",
|
1918 |
+
"metadata": {},
|
1919 |
+
"source": [
|
1920 |
+
"Christopher agrees that the following is sufficient to label images from the following three records:\n",
|
1921 |
+
">3 records seem to have all of just one indicated species/subspecies: https://zenodo.org/record/5526257, https://zenodo.org/record/2554218, and https://zenodo.org/record/2555086. According to their Zenodo pages, the first appear to be all _Heliconius erato ssp. cyrbia_, the second indicates all _Heliconius erato_, and the third it seems is all bred specimens of _Heliconius erato demophoon_. \n",
|
1922 |
+
"\n",
|
1923 |
+
"`Unit_Type` and some other details could potentially be realigned at a later date, but we'll stick with taxonomic information for now."
|
1924 |
+
]
|
1925 |
+
},
|
1926 |
+
{
|
1927 |
+
"cell_type": "code",
|
1928 |
+
"execution_count": 34,
|
1929 |
+
"metadata": {},
|
1930 |
+
"outputs": [],
|
1931 |
+
"source": [
|
1932 |
+
"df.loc[df[\"record_number\"] == 5526257, \"Taxonomic_Name\"] = \"Heliconius erato ssp. cyrbia\"\n",
|
1933 |
+
"df.loc[df[\"record_number\"] == 5526257, \"genus\"] = \"Heliconius\"\n",
|
1934 |
+
"df.loc[df[\"record_number\"] == 5526257, \"species\"] = \"Heliconius erato\"\n",
|
1935 |
+
"df.loc[df[\"record_number\"] == 5526257, \"subspecies\"] = \"cyrbia\"\n",
|
1936 |
+
"df.loc[df[\"record_number\"] == 5526257, \"hybrid_stat\"] = \"non-hybrid\""
|
1937 |
+
]
|
1938 |
+
},
|
1939 |
+
{
|
1940 |
+
"cell_type": "code",
|
1941 |
+
"execution_count": 35,
|
1942 |
+
"metadata": {},
|
1943 |
+
"outputs": [],
|
1944 |
+
"source": [
|
1945 |
+
"df.loc[df[\"record_number\"] == 2554218, \"Taxonomic_Name\"] = \"Heliconius erato\"\n",
|
1946 |
+
"df.loc[df[\"record_number\"] == 2554218, \"genus\"] = \"Heliconius\"\n",
|
1947 |
+
"df.loc[df[\"record_number\"] == 2554218, \"species\"] = \"Heliconius erato\""
|
1948 |
+
]
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"cell_type": "code",
|
1952 |
+
"execution_count": 36,
|
1953 |
+
"metadata": {},
|
1954 |
+
"outputs": [],
|
1955 |
+
"source": [
|
1956 |
+
"df.loc[df[\"record_number\"] == 2555086, \"Taxonomic_Name\"] = \"Heliconius erato ssp. demophoon\"\n",
|
1957 |
+
"df.loc[df[\"record_number\"] == 2555086, \"genus\"] = \"Heliconius\"\n",
|
1958 |
+
"df.loc[df[\"record_number\"] == 2555086, \"species\"] = \"Heliconius erato\"\n",
|
1959 |
+
"df.loc[df[\"record_number\"] == 2555086, \"subspecies\"] = \"demophoon\"\n",
|
1960 |
+
"df.loc[df[\"record_number\"] == 2555086, \"hybrid_stat\"] = \"non-hybrid\""
|
1961 |
+
]
|
1962 |
+
},
|
1963 |
+
{
|
1964 |
+
"cell_type": "markdown",
|
1965 |
+
"metadata": {},
|
1966 |
+
"source": [
|
1967 |
+
"### Save record of entries with no Taxonomic Info"
|
1968 |
+
]
|
1969 |
+
},
|
1970 |
+
{
|
1971 |
+
"cell_type": "code",
|
1972 |
+
"execution_count": 37,
|
1973 |
+
"metadata": {},
|
1974 |
+
"outputs": [
|
1975 |
+
{
|
1976 |
+
"data": {
|
1977 |
+
"text/plain": [
|
1978 |
+
"(1630, 28)"
|
1979 |
+
]
|
1980 |
+
},
|
1981 |
+
"execution_count": 37,
|
1982 |
+
"metadata": {},
|
1983 |
+
"output_type": "execute_result"
|
1984 |
+
}
|
1985 |
+
],
|
1986 |
+
"source": [
|
1987 |
+
"missing_taxa_df = df.loc[df.Taxonomic_Name.isna()]\n",
|
1988 |
+
"missing_taxa_df.shape"
|
1989 |
+
]
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"cell_type": "code",
|
1993 |
+
"execution_count": 39,
|
1994 |
+
"metadata": {},
|
1995 |
+
"outputs": [],
|
1996 |
+
"source": [
|
1997 |
+
"missing_taxa_df.to_csv(\"../metadata/Missing_taxa_Jiggins_Zenodo_Master.csv\", index = False)"
|
1998 |
+
]
|
1999 |
+
},
|
2000 |
+
{
|
2001 |
+
"cell_type": "markdown",
|
2002 |
+
"metadata": {},
|
2003 |
+
"source": [
|
2004 |
+
"### Drop Entries with no Taxonomic Information"
|
2005 |
+
]
|
2006 |
+
},
|
2007 |
+
{
|
2008 |
+
"cell_type": "code",
|
2009 |
+
"execution_count": 40,
|
2010 |
+
"metadata": {},
|
2011 |
+
"outputs": [],
|
2012 |
+
"source": [
|
2013 |
+
"master_df = df.loc[df.Taxonomic_Name.notna()]"
|
2014 |
+
]
|
2015 |
+
},
|
2016 |
+
{
|
2017 |
+
"cell_type": "markdown",
|
2018 |
+
"metadata": {},
|
2019 |
+
"source": [
|
2020 |
+
"## Final stats for all data in master file summarized here."
|
2021 |
+
]
|
2022 |
+
},
|
2023 |
+
{
|
2024 |
+
"cell_type": "code",
|
2025 |
+
"execution_count": 41,
|
2026 |
+
"metadata": {},
|
2027 |
+
"outputs": [
|
2028 |
+
{
|
2029 |
+
"data": {
|
2030 |
+
"text/plain": [
|
2031 |
+
"CAMID 11991\n",
|
2032 |
+
"X 44809\n",
|
2033 |
+
"Image_name 36281\n",
|
2034 |
+
"View 7\n",
|
2035 |
+
"zenodo_name 33\n",
|
2036 |
+
"zenodo_link 30\n",
|
2037 |
+
"Sequence 10905\n",
|
2038 |
+
"Taxonomic_Name 366\n",
|
2039 |
+
"Locality 645\n",
|
2040 |
+
"Sample_accession 1559\n",
|
2041 |
+
"Collected_by 12\n",
|
2042 |
+
"Other_ID 3081\n",
|
2043 |
+
"Date 807\n",
|
2044 |
+
"Dataset 8\n",
|
2045 |
+
"Store 137\n",
|
2046 |
+
"Brood 224\n",
|
2047 |
+
"Death_Date 81\n",
|
2048 |
+
"Cross_Type 30\n",
|
2049 |
+
"Stage 1\n",
|
2050 |
+
"Sex 3\n",
|
2051 |
+
"Unit_Type 4\n",
|
2052 |
+
"file_type 3\n",
|
2053 |
+
"record_number 30\n",
|
2054 |
+
"species 246\n",
|
2055 |
+
"subspecies 155\n",
|
2056 |
+
"genus 94\n",
|
2057 |
+
"file_url 44794\n",
|
2058 |
+
"hybrid_stat 2\n",
|
2059 |
+
"dtype: int64"
|
2060 |
+
]
|
2061 |
+
},
|
2062 |
+
"execution_count": 41,
|
2063 |
+
"metadata": {},
|
2064 |
+
"output_type": "execute_result"
|
2065 |
+
}
|
2066 |
+
],
|
2067 |
+
"source": [
|
2068 |
+
"master_df.nunique()"
|
2069 |
+
]
|
2070 |
+
},
|
2071 |
+
{
|
2072 |
+
"cell_type": "code",
|
2073 |
+
"execution_count": 42,
|
2074 |
+
"metadata": {},
|
2075 |
+
"outputs": [
|
2076 |
+
{
|
2077 |
+
"name": "stdout",
|
2078 |
+
"output_type": "stream",
|
2079 |
+
"text": [
|
2080 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
2081 |
+
"Index: 44809 entries, 6 to 49358\n",
|
2082 |
+
"Data columns (total 28 columns):\n",
|
2083 |
+
" # Column Non-Null Count Dtype \n",
|
2084 |
+
"--- ------ -------------- ----- \n",
|
2085 |
+
" 0 CAMID 44809 non-null object\n",
|
2086 |
+
" 1 X 44809 non-null int64 \n",
|
2087 |
+
" 2 Image_name 44809 non-null object\n",
|
2088 |
+
" 3 View 44030 non-null object\n",
|
2089 |
+
" 4 zenodo_name 44809 non-null object\n",
|
2090 |
+
" 5 zenodo_link 44809 non-null object\n",
|
2091 |
+
" 6 Sequence 43877 non-null object\n",
|
2092 |
+
" 7 Taxonomic_Name 44809 non-null object\n",
|
2093 |
+
" 8 Locality 31708 non-null object\n",
|
2094 |
+
" 9 Sample_accession 4572 non-null object\n",
|
2095 |
+
" 10 Collected_by 3043 non-null object\n",
|
2096 |
+
" 11 Other_ID 14352 non-null object\n",
|
2097 |
+
" 12 Date 30730 non-null object\n",
|
2098 |
+
" 13 Dataset 37024 non-null object\n",
|
2099 |
+
" 14 Store 36220 non-null object\n",
|
2100 |
+
" 15 Brood 14258 non-null object\n",
|
2101 |
+
" 16 Death_Date 316 non-null object\n",
|
2102 |
+
" 17 Cross_Type 4452 non-null object\n",
|
2103 |
+
" 18 Stage 6 non-null object\n",
|
2104 |
+
" 19 Sex 33312 non-null object\n",
|
2105 |
+
" 20 Unit_Type 30923 non-null object\n",
|
2106 |
+
" 21 file_type 44809 non-null object\n",
|
2107 |
+
" 22 record_number 44809 non-null int64 \n",
|
2108 |
+
" 23 species 44809 non-null object\n",
|
2109 |
+
" 24 subspecies 24559 non-null object\n",
|
2110 |
+
" 25 genus 44809 non-null object\n",
|
2111 |
+
" 26 file_url 44809 non-null object\n",
|
2112 |
+
" 27 hybrid_stat 25139 non-null object\n",
|
2113 |
+
"dtypes: int64(2), object(26)\n",
|
2114 |
+
"memory usage: 9.9+ MB\n"
|
2115 |
+
]
|
2116 |
+
}
|
2117 |
+
],
|
2118 |
+
"source": [
|
2119 |
+
"master_df.info()"
|
2120 |
+
]
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"cell_type": "markdown",
|
2124 |
+
"metadata": {},
|
2125 |
+
"source": [
|
2126 |
+
"### Update Master File with Hybrid Status and URL Columns (& unique records)"
|
2127 |
+
]
|
2128 |
+
},
|
2129 |
+
{
|
2130 |
+
"cell_type": "code",
|
2131 |
+
"execution_count": 44,
|
2132 |
+
"metadata": {},
|
2133 |
+
"outputs": [],
|
2134 |
+
"source": [
|
2135 |
+
"master_df.to_csv(\"../Jiggins_Zenodo_Img_Master.csv\", index = False)"
|
2136 |
+
]
|
2137 |
+
},
|
2138 |
+
{
|
2139 |
+
"cell_type": "markdown",
|
2140 |
+
"metadata": {},
|
2141 |
+
"source": [
|
2142 |
+
"## Make Heliconius Subset"
|
2143 |
+
]
|
2144 |
+
},
|
2145 |
+
{
|
2146 |
+
"cell_type": "code",
|
2147 |
+
"execution_count": 45,
|
2148 |
+
"metadata": {},
|
2149 |
+
"outputs": [
|
2150 |
+
{
|
2151 |
+
"name": "stdout",
|
2152 |
+
"output_type": "stream",
|
2153 |
+
"text": [
|
2154 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
2155 |
+
"Index: 34265 entries, 6 to 49358\n",
|
2156 |
+
"Data columns (total 28 columns):\n",
|
2157 |
+
" # Column Non-Null Count Dtype \n",
|
2158 |
+
"--- ------ -------------- ----- \n",
|
2159 |
+
" 0 CAMID 34265 non-null object\n",
|
2160 |
+
" 1 X 34265 non-null int64 \n",
|
2161 |
+
" 2 Image_name 34265 non-null object\n",
|
2162 |
+
" 3 View 33486 non-null object\n",
|
2163 |
+
" 4 zenodo_name 34265 non-null object\n",
|
2164 |
+
" 5 zenodo_link 34265 non-null object\n",
|
2165 |
+
" 6 Sequence 33333 non-null object\n",
|
2166 |
+
" 7 Taxonomic_Name 34265 non-null object\n",
|
2167 |
+
" 8 Locality 21180 non-null object\n",
|
2168 |
+
" 9 Sample_accession 4572 non-null object\n",
|
2169 |
+
" 10 Collected_by 3043 non-null object\n",
|
2170 |
+
" 11 Other_ID 6404 non-null object\n",
|
2171 |
+
" 12 Date 20244 non-null object\n",
|
2172 |
+
" 13 Dataset 29926 non-null object\n",
|
2173 |
+
" 14 Store 26526 non-null object\n",
|
2174 |
+
" 15 Brood 14242 non-null object\n",
|
2175 |
+
" 16 Death_Date 316 non-null object\n",
|
2176 |
+
" 17 Cross_Type 4452 non-null object\n",
|
2177 |
+
" 18 Stage 6 non-null object\n",
|
2178 |
+
" 19 Sex 30984 non-null object\n",
|
2179 |
+
" 20 Unit_Type 29055 non-null object\n",
|
2180 |
+
" 21 file_type 34265 non-null object\n",
|
2181 |
+
" 22 record_number 34265 non-null int64 \n",
|
2182 |
+
" 23 species 34265 non-null object\n",
|
2183 |
+
" 24 subspecies 23801 non-null object\n",
|
2184 |
+
" 25 genus 34265 non-null object\n",
|
2185 |
+
" 26 file_url 34265 non-null object\n",
|
2186 |
+
" 27 hybrid_stat 24317 non-null object\n",
|
2187 |
+
"dtypes: int64(2), object(26)\n",
|
2188 |
+
"memory usage: 7.6+ MB\n"
|
2189 |
+
]
|
2190 |
+
}
|
2191 |
+
],
|
2192 |
+
"source": [
|
2193 |
+
"heliconius_subset = master_df.loc[master_df.genus.str.lower() == \"heliconius\"]\n",
|
2194 |
+
"\n",
|
2195 |
+
"heliconius_subset.info()"
|
2196 |
+
]
|
2197 |
+
},
|
2198 |
+
{
|
2199 |
+
"cell_type": "code",
|
2200 |
+
"execution_count": 46,
|
2201 |
+
"metadata": {},
|
2202 |
+
"outputs": [
|
2203 |
+
{
|
2204 |
+
"data": {
|
2205 |
+
"text/plain": [
|
2206 |
+
"CAMID 10109\n",
|
2207 |
+
"X 34265\n",
|
2208 |
+
"Image_name 29192\n",
|
2209 |
+
"View 3\n",
|
2210 |
+
"zenodo_name 33\n",
|
2211 |
+
"zenodo_link 30\n",
|
2212 |
+
"Sequence 9031\n",
|
2213 |
+
"Taxonomic_Name 132\n",
|
2214 |
+
"Locality 472\n",
|
2215 |
+
"Sample_accession 1559\n",
|
2216 |
+
"Collected_by 12\n",
|
2217 |
+
"Other_ID 1865\n",
|
2218 |
+
"Date 776\n",
|
2219 |
+
"Dataset 8\n",
|
2220 |
+
"Store 121\n",
|
2221 |
+
"Brood 224\n",
|
2222 |
+
"Death_Date 81\n",
|
2223 |
+
"Cross_Type 30\n",
|
2224 |
+
"Stage 1\n",
|
2225 |
+
"Sex 3\n",
|
2226 |
+
"Unit_Type 4\n",
|
2227 |
+
"file_type 3\n",
|
2228 |
+
"record_number 30\n",
|
2229 |
+
"species 37\n",
|
2230 |
+
"subspecies 110\n",
|
2231 |
+
"genus 1\n",
|
2232 |
+
"file_url 34250\n",
|
2233 |
+
"hybrid_stat 2\n",
|
2234 |
+
"dtype: int64"
|
2235 |
+
]
|
2236 |
+
},
|
2237 |
+
"execution_count": 46,
|
2238 |
+
"metadata": {},
|
2239 |
+
"output_type": "execute_result"
|
2240 |
+
}
|
2241 |
+
],
|
2242 |
+
"source": [
|
2243 |
+
"heliconius_subset.nunique()"
|
2244 |
+
]
|
2245 |
+
},
|
2246 |
+
{
|
2247 |
+
"cell_type": "code",
|
2248 |
+
"execution_count": 47,
|
2249 |
+
"metadata": {},
|
2250 |
+
"outputs": [
|
2251 |
+
{
|
2252 |
+
"data": {
|
2253 |
+
"text/plain": [
|
2254 |
+
"View\n",
|
2255 |
+
"dorsal 16882\n",
|
2256 |
+
"ventral 16586\n",
|
2257 |
+
"dorsal and ventral 18\n",
|
2258 |
+
"Name: count, dtype: int64"
|
2259 |
+
]
|
2260 |
+
},
|
2261 |
+
"execution_count": 47,
|
2262 |
+
"metadata": {},
|
2263 |
+
"output_type": "execute_result"
|
2264 |
+
}
|
2265 |
+
],
|
2266 |
+
"source": [
|
2267 |
+
"heliconius_subset.View.value_counts()"
|
2268 |
+
]
|
2269 |
+
},
|
2270 |
+
{
|
2271 |
+
"cell_type": "markdown",
|
2272 |
+
"metadata": {},
|
2273 |
+
"source": [
|
2274 |
+
"Note that this subset is distributed across 30 Zenodo records from the [Butterfly Genetics Group](https://zenodo.org/communities/butterfly?q=&l=list&p=1&s=10&sort=newest)."
|
2275 |
+
]
|
2276 |
+
},
|
2277 |
+
{
|
2278 |
+
"cell_type": "markdown",
|
2279 |
+
"metadata": {},
|
2280 |
+
"source": [
|
2281 |
+
"### Save the Heliconius Subset to CSV\n"
|
2282 |
+
]
|
2283 |
+
},
|
2284 |
+
{
|
2285 |
+
"cell_type": "code",
|
2286 |
+
"execution_count": 48,
|
2287 |
+
"metadata": {},
|
2288 |
+
"outputs": [],
|
2289 |
+
"source": [
|
2290 |
+
"heliconius_subset.to_csv(\"../Jiggins_Heliconius_Master.csv\", index = False)"
|
2291 |
+
]
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"cell_type": "markdown",
|
2295 |
+
"metadata": {},
|
2296 |
+
"source": [
|
2297 |
+
"## Make Dorsal Subset"
|
2298 |
+
]
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"cell_type": "code",
|
2302 |
+
"execution_count": 49,
|
2303 |
+
"metadata": {},
|
2304 |
+
"outputs": [
|
2305 |
+
{
|
2306 |
+
"name": "stdout",
|
2307 |
+
"output_type": "stream",
|
2308 |
+
"text": [
|
2309 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
2310 |
+
"Index: 22175 entries, 7 to 49357\n",
|
2311 |
+
"Data columns (total 28 columns):\n",
|
2312 |
+
" # Column Non-Null Count Dtype \n",
|
2313 |
+
"--- ------ -------------- ----- \n",
|
2314 |
+
" 0 CAMID 22175 non-null object\n",
|
2315 |
+
" 1 X 22175 non-null int64 \n",
|
2316 |
+
" 2 Image_name 22175 non-null object\n",
|
2317 |
+
" 3 View 22175 non-null object\n",
|
2318 |
+
" 4 zenodo_name 22175 non-null object\n",
|
2319 |
+
" 5 zenodo_link 22175 non-null object\n",
|
2320 |
+
" 6 Sequence 21709 non-null object\n",
|
2321 |
+
" 7 Taxonomic_Name 22175 non-null object\n",
|
2322 |
+
" 8 Locality 15615 non-null object\n",
|
2323 |
+
" 9 Sample_accession 2294 non-null object\n",
|
2324 |
+
" 10 Collected_by 1533 non-null object\n",
|
2325 |
+
" 11 Other_ID 6916 non-null object\n",
|
2326 |
+
" 12 Date 15347 non-null object\n",
|
2327 |
+
" 13 Dataset 18250 non-null object\n",
|
2328 |
+
" 14 Store 18254 non-null object\n",
|
2329 |
+
" 15 Brood 6920 non-null object\n",
|
2330 |
+
" 16 Death_Date 106 non-null object\n",
|
2331 |
+
" 17 Cross_Type 2230 non-null object\n",
|
2332 |
+
" 18 Stage 3 non-null object\n",
|
2333 |
+
" 19 Sex 16403 non-null object\n",
|
2334 |
+
" 20 Unit_Type 15203 non-null object\n",
|
2335 |
+
" 21 file_type 22175 non-null object\n",
|
2336 |
+
" 22 record_number 22175 non-null int64 \n",
|
2337 |
+
" 23 species 22175 non-null object\n",
|
2338 |
+
" 24 subspecies 12040 non-null object\n",
|
2339 |
+
" 25 genus 22175 non-null object\n",
|
2340 |
+
" 26 file_url 22175 non-null object\n",
|
2341 |
+
" 27 hybrid_stat 12330 non-null object\n",
|
2342 |
+
"dtypes: int64(2), object(26)\n",
|
2343 |
+
"memory usage: 4.9+ MB\n"
|
2344 |
+
]
|
2345 |
+
}
|
2346 |
+
],
|
2347 |
+
"source": [
|
2348 |
+
"dorsal_views = [view for view in list(master_df.View.dropna().unique()) if \"dorsal\" in view]\n",
|
2349 |
+
"\n",
|
2350 |
+
"dorsal_subset = master_df.loc[master_df[\"View\"].isin(dorsal_views)]\n",
|
2351 |
+
"dorsal_subset.info()"
|
2352 |
+
]
|
2353 |
+
},
|
2354 |
+
{
|
2355 |
+
"cell_type": "code",
|
2356 |
+
"execution_count": 50,
|
2357 |
+
"metadata": {},
|
2358 |
+
"outputs": [
|
2359 |
+
{
|
2360 |
+
"data": {
|
2361 |
+
"text/plain": [
|
2362 |
+
"CAMID 11776\n",
|
2363 |
+
"X 22175\n",
|
2364 |
+
"Image_name 17907\n",
|
2365 |
+
"View 4\n",
|
2366 |
+
"zenodo_name 33\n",
|
2367 |
+
"zenodo_link 30\n",
|
2368 |
+
"Sequence 10713\n",
|
2369 |
+
"Taxonomic_Name 362\n",
|
2370 |
+
"Locality 642\n",
|
2371 |
+
"Sample_accession 1552\n",
|
2372 |
+
"Collected_by 12\n",
|
2373 |
+
"Other_ID 2890\n",
|
2374 |
+
"Date 791\n",
|
2375 |
+
"Dataset 8\n",
|
2376 |
+
"Store 137\n",
|
2377 |
+
"Brood 215\n",
|
2378 |
+
"Death_Date 63\n",
|
2379 |
+
"Cross_Type 30\n",
|
2380 |
+
"Stage 1\n",
|
2381 |
+
"Sex 3\n",
|
2382 |
+
"Unit_Type 4\n",
|
2383 |
+
"file_type 3\n",
|
2384 |
+
"record_number 30\n",
|
2385 |
+
"species 245\n",
|
2386 |
+
"subspecies 152\n",
|
2387 |
+
"genus 94\n",
|
2388 |
+
"file_url 22168\n",
|
2389 |
+
"hybrid_stat 2\n",
|
2390 |
+
"dtype: int64"
|
2391 |
+
]
|
2392 |
+
},
|
2393 |
+
"execution_count": 50,
|
2394 |
+
"metadata": {},
|
2395 |
+
"output_type": "execute_result"
|
2396 |
+
}
|
2397 |
+
],
|
2398 |
+
"source": [
|
2399 |
+
"dorsal_subset.nunique()"
|
2400 |
+
]
|
2401 |
+
},
|
2402 |
+
{
|
2403 |
+
"cell_type": "markdown",
|
2404 |
+
"metadata": {},
|
2405 |
+
"source": [
|
2406 |
+
"Observe that we still have duplicate samples (duplicated `CAMID`), so we'll add a column indicating this (`CAM_Dupe`). We will not leave the first instance as a non-duplicate to have a clear assessment of all duplication (eg., is it just across a couple records).\n",
|
2407 |
+
"\n",
|
2408 |
+
"Note that they will be duplicated for the images that are of a dorsal forewing or hindwing, so we will label those as `single_wing`."
|
2409 |
+
]
|
2410 |
+
},
|
2411 |
+
{
|
2412 |
+
"cell_type": "code",
|
2413 |
+
"execution_count": 51,
|
2414 |
+
"metadata": {},
|
2415 |
+
"outputs": [
|
2416 |
+
{
|
2417 |
+
"name": "stderr",
|
2418 |
+
"output_type": "stream",
|
2419 |
+
"text": [
|
2420 |
+
"/var/folders/nv/f0fq1p1n1_3b11x579py_0q80000gq/T/ipykernel_21745/2272441064.py:1: SettingWithCopyWarning: \n",
|
2421 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
2422 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
2423 |
+
"\n",
|
2424 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
2425 |
+
" dorsal_subset[\"CAM_Dupe\"] = dorsal_subset.duplicated(subset = \"CAMID\", keep = False)\n"
|
2426 |
+
]
|
2427 |
+
},
|
2428 |
+
{
|
2429 |
+
"data": {
|
2430 |
+
"text/plain": [
|
2431 |
+
"CAM_Dupe\n",
|
2432 |
+
"True 17213\n",
|
2433 |
+
"False 4170\n",
|
2434 |
+
"single-wing 792\n",
|
2435 |
+
"Name: count, dtype: int64"
|
2436 |
+
]
|
2437 |
+
},
|
2438 |
+
"execution_count": 51,
|
2439 |
+
"metadata": {},
|
2440 |
+
"output_type": "execute_result"
|
2441 |
+
}
|
2442 |
+
],
|
2443 |
+
"source": [
|
2444 |
+
"dorsal_subset[\"CAM_Dupe\"] = dorsal_subset.duplicated(subset = \"CAMID\", keep = False)\n",
|
2445 |
+
"dorsal_subset.loc[dorsal_subset[\"View\"].isin([\"forewing dorsal\", \"hindwing dorsal\"]), \"CAM_Dupe\"] = \"single-wing\"\n",
|
2446 |
+
"dorsal_subset[\"CAM_Dupe\"].value_counts()"
|
2447 |
+
]
|
2448 |
+
},
|
2449 |
+
{
|
2450 |
+
"cell_type": "code",
|
2451 |
+
"execution_count": 52,
|
2452 |
+
"metadata": {},
|
2453 |
+
"outputs": [
|
2454 |
+
{
|
2455 |
+
"data": {
|
2456 |
+
"text/plain": [
|
2457 |
+
"29"
|
2458 |
+
]
|
2459 |
+
},
|
2460 |
+
"execution_count": 52,
|
2461 |
+
"metadata": {},
|
2462 |
+
"output_type": "execute_result"
|
2463 |
+
}
|
2464 |
+
],
|
2465 |
+
"source": [
|
2466 |
+
"dorsal_subset.loc[dorsal_subset[\"CAM_Dupe\"] == True, \"record_number\"].nunique()"
|
2467 |
+
]
|
2468 |
+
},
|
2469 |
+
{
|
2470 |
+
"cell_type": "markdown",
|
2471 |
+
"metadata": {},
|
2472 |
+
"source": [
|
2473 |
+
"Okay, nearly all records have duplication even in the dorsal subset. That does make sense when we have just over half as many unique `CAMID`s as number of images."
|
2474 |
+
]
|
2475 |
+
},
|
2476 |
+
{
|
2477 |
+
"cell_type": "code",
|
2478 |
+
"execution_count": 53,
|
2479 |
+
"metadata": {},
|
2480 |
+
"outputs": [
|
2481 |
+
{
|
2482 |
+
"data": {
|
2483 |
+
"text/plain": [
|
2484 |
+
"record_number\n",
|
2485 |
+
"4287444 396\n",
|
2486 |
+
"4288250 284\n",
|
2487 |
+
"3569598 112\n",
|
2488 |
+
"Name: count, dtype: int64"
|
2489 |
+
]
|
2490 |
+
},
|
2491 |
+
"execution_count": 53,
|
2492 |
+
"metadata": {},
|
2493 |
+
"output_type": "execute_result"
|
2494 |
+
}
|
2495 |
+
],
|
2496 |
+
"source": [
|
2497 |
+
"dorsal_subset.loc[dorsal_subset[\"CAM_Dupe\"] == \"single-wing\", \"record_number\"].value_counts()"
|
2498 |
+
]
|
2499 |
+
},
|
2500 |
+
{
|
2501 |
+
"cell_type": "markdown",
|
2502 |
+
"metadata": {},
|
2503 |
+
"source": [
|
2504 |
+
"Single-wing images are constrained to 3 records."
|
2505 |
+
]
|
2506 |
+
},
|
2507 |
+
{
|
2508 |
+
"cell_type": "code",
|
2509 |
+
"execution_count": 54,
|
2510 |
+
"metadata": {},
|
2511 |
+
"outputs": [
|
2512 |
+
{
|
2513 |
+
"data": {
|
2514 |
+
"text/plain": [
|
2515 |
+
"file_type\n",
|
2516 |
+
"jpg 11752\n",
|
2517 |
+
"raw 5440\n",
|
2518 |
+
"tif 21\n",
|
2519 |
+
"Name: count, dtype: int64"
|
2520 |
+
]
|
2521 |
+
},
|
2522 |
+
"execution_count": 54,
|
2523 |
+
"metadata": {},
|
2524 |
+
"output_type": "execute_result"
|
2525 |
+
}
|
2526 |
+
],
|
2527 |
+
"source": [
|
2528 |
+
"dorsal_subset.loc[dorsal_subset[\"CAM_Dupe\"] == True, \"file_type\"].value_counts()"
|
2529 |
+
]
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"cell_type": "markdown",
|
2533 |
+
"metadata": {},
|
2534 |
+
"source": [
|
2535 |
+
"Some of this duplication is by file type."
|
2536 |
+
]
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"cell_type": "code",
|
2540 |
+
"execution_count": 55,
|
2541 |
+
"metadata": {},
|
2542 |
+
"outputs": [
|
2543 |
+
{
|
2544 |
+
"data": {
|
2545 |
+
"text/plain": [
|
2546 |
+
"True 8415\n",
|
2547 |
+
"False 3337\n",
|
2548 |
+
"Name: count, dtype: int64"
|
2549 |
+
]
|
2550 |
+
},
|
2551 |
+
"execution_count": 55,
|
2552 |
+
"metadata": {},
|
2553 |
+
"output_type": "execute_result"
|
2554 |
+
}
|
2555 |
+
],
|
2556 |
+
"source": [
|
2557 |
+
"dorsal_subset.loc[(dorsal_subset[\"CAM_Dupe\"] == True) & (dorsal_subset[\"file_type\"] == \"jpg\")].duplicated(subset = \"CAMID\", keep = False).value_counts()"
|
2558 |
+
]
|
2559 |
+
},
|
2560 |
+
{
|
2561 |
+
"cell_type": "code",
|
2562 |
+
"execution_count": 56,
|
2563 |
+
"metadata": {},
|
2564 |
+
"outputs": [
|
2565 |
+
{
|
2566 |
+
"data": {
|
2567 |
+
"text/plain": [
|
2568 |
+
"False 4106\n",
|
2569 |
+
"True 1334\n",
|
2570 |
+
"Name: count, dtype: int64"
|
2571 |
+
]
|
2572 |
+
},
|
2573 |
+
"execution_count": 56,
|
2574 |
+
"metadata": {},
|
2575 |
+
"output_type": "execute_result"
|
2576 |
+
}
|
2577 |
+
],
|
2578 |
+
"source": [
|
2579 |
+
"dorsal_subset.loc[(dorsal_subset[\"CAM_Dupe\"] == True) & (dorsal_subset[\"file_type\"] == \"raw\")].duplicated(subset = \"CAMID\", keep = False).value_counts()"
|
2580 |
+
]
|
2581 |
+
},
|
2582 |
+
{
|
2583 |
+
"cell_type": "markdown",
|
2584 |
+
"metadata": {},
|
2585 |
+
"source": [
|
2586 |
+
"We have multiple jpg images & multiple raw images of the same specimen. Note that this does not necessarily mean these are duplicates of the same images. There are also jpg copies provided alongside raw images."
|
2587 |
+
]
|
2588 |
+
},
|
2589 |
+
{
|
2590 |
+
"cell_type": "markdown",
|
2591 |
+
"metadata": {},
|
2592 |
+
"source": [
|
2593 |
+
"### Save Dorsal Subset to CSV"
|
2594 |
+
]
|
2595 |
+
},
|
2596 |
+
{
|
2597 |
+
"cell_type": "code",
|
2598 |
+
"execution_count": 57,
|
2599 |
+
"metadata": {},
|
2600 |
+
"outputs": [],
|
2601 |
+
"source": [
|
2602 |
+
"dorsal_subset.to_csv(\"../Jiggins_Zenodo_dorsal_Img_Master.csv\", index = False)"
|
2603 |
+
]
|
2604 |
+
},
|
2605 |
+
{
|
2606 |
+
"cell_type": "code",
|
2607 |
+
"execution_count": null,
|
2608 |
+
"metadata": {},
|
2609 |
+
"outputs": [],
|
2610 |
+
"source": []
|
2611 |
+
}
|
2612 |
+
],
|
2613 |
+
"metadata": {
|
2614 |
+
"kernelspec": {
|
2615 |
+
"display_name": "std",
|
2616 |
+
"language": "python",
|
2617 |
+
"name": "python3"
|
2618 |
+
},
|
2619 |
+
"language_info": {
|
2620 |
+
"codemirror_mode": {
|
2621 |
+
"name": "ipython",
|
2622 |
+
"version": 3
|
2623 |
+
},
|
2624 |
+
"file_extension": ".py",
|
2625 |
+
"mimetype": "text/x-python",
|
2626 |
+
"name": "python",
|
2627 |
+
"nbconvert_exporter": "python",
|
2628 |
+
"pygments_lexer": "ipython3",
|
2629 |
+
"version": "3.11.3"
|
2630 |
+
},
|
2631 |
+
"orig_nbformat": 4
|
2632 |
+
},
|
2633 |
+
"nbformat": 4,
|
2634 |
+
"nbformat_minor": 2
|
2635 |
+
}
|