|
import pandas as pd |
|
import requests |
|
from PIL import Image |
|
from io import BytesIO |
|
import os |
|
from tqdm import tqdm |
|
import json |
|
import argparse |
|
|
|
parser = argparse.ArgumentParser(description='Download, process and save ND images') |
|
parser.add_argument('--save_dir', type=str, help='The directory where processed images will be saved') |
|
args = parser.parse_args() |
|
|
|
save_dir = args.save_dir |
|
|
|
if not os.path.exists('ND_Processing_Files'): |
|
raise Exception('The ND processing file directory is not found in your current working directory') |
|
|
|
if not os.path.exists(save_dir): |
|
os.mkdir(save_dir) |
|
|
|
nd_df = pd.read_csv(os.path.join('ND_Processing_Files', 'ND_data.csv')) |
|
with open(os.path.join('ND_Processing_Files', 'nd_filenames_bboxes_map.json'), 'r') as f: |
|
nd_filenames_bboxes_map = json.load(f) |
|
seg_mask_dir = os.path.join('ND_Processing_Files', 'ND_background_masks') |
|
padding = 20 |
|
|
|
for i, row in tqdm(nd_df.iterrows()): |
|
target_filename = row['filename'] |
|
|
|
download_url = row['original_url'] |
|
local_filename = 'temp.jpg' |
|
response = requests.get(download_url) |
|
|
|
response.raise_for_status() |
|
|
|
image = Image.open(BytesIO(response.content)) |
|
|
|
target_bbox = nd_filenames_bboxes_map[target_filename] |
|
|
|
left, upper, right, lower = target_bbox |
|
max_width, max_height = image.size |
|
|
|
padded_left = max(left - padding, 0) |
|
padded_upper = max(upper - padding, 0) |
|
padded_right = min(right + padding, max_width) |
|
padded_lower = min(lower + padding, max_height) |
|
|
|
|
|
cropped_image = image.crop((padded_left, padded_upper, padded_right, padded_lower)) |
|
|
|
assert target_filename[-4] == '.', 'The code assumes we have .<extension> at the end' |
|
target_seg_mask_file = target_filename[:-4]+'.png' |
|
|
|
if target_seg_mask_file in os.listdir(seg_mask_dir): |
|
mask_image = Image.open(os.path.join(seg_mask_dir, target_seg_mask_file)).convert('L') |
|
else: |
|
print(f'Segmentation mask not found for target image {target_filename}. Skipping...') |
|
continue |
|
|
|
white_image = Image.new("RGB", cropped_image.size, (255, 255, 255)) |
|
|
|
result_image = Image.composite(cropped_image, white_image, mask_image) |
|
result_image.save(os.path.join(save_dir, target_filename)) |