ksmehrab commited on
Commit
78ce079
1 Parent(s): 54852ae

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -0
README.md CHANGED
@@ -49,6 +49,8 @@ Image with caption:
49
  -->
50
 
51
  # Dataset Card for Fish-Visual Trait Analysis (Fish-Vista)
 
 
52
  |![Figure 1](https://huggingface.co/datasets/imageomics/fish-vista/resolve/main/metadata/figures/FishVista.png)|
53
  |:--|
54
  |**Figure 1.** A schematic representation of the different tasks in Fish-Vista Dataset. |
@@ -73,6 +75,10 @@ mv AllImages Images
73
 
74
  * You should now have all the images in the *Images* directory
75
 
 
 
 
 
76
  * Run the following commands to download and process copyrighted images
77
  ```bash
78
  python download_and_process_nd_images.py --save_dir Images
@@ -180,6 +186,47 @@ CSV Columns are as follows:
180
 
181
  For each task (or subset), the split is indicated by the CSV name (e.g., `classification_<split>.csv`). More information is provided in [Data Instances](#data-instances), above.
182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183
 
184
  ## Dataset Details
185
 
 
49
  -->
50
 
51
  # Dataset Card for Fish-Visual Trait Analysis (Fish-Vista)
52
+ * Note that the '**</Use this dataset>**' option will only load the CSV files. To download the entire dataset, including all images and segmentation annotations, refer to [Instructions for downloading dataset and images](https://huggingface.co/datasets/imageomics/fish-vista#instructions-for-downloading-dataset-and-images).
53
+ * See [Example Code to Use the Segmentation Dataset])(https://huggingface.co/datasets/imageomics/fish-vista#example-code-to-use-the-segmentation-dataset)
54
  |![Figure 1](https://huggingface.co/datasets/imageomics/fish-vista/resolve/main/metadata/figures/FishVista.png)|
55
  |:--|
56
  |**Figure 1.** A schematic representation of the different tasks in Fish-Vista Dataset. |
 
75
 
76
  * You should now have all the images in the *Images* directory
77
 
78
+ * Install requirements.txt
79
+ ```bash
80
+ pip install -r requirements.txt
81
+ ```
82
  * Run the following commands to download and process copyrighted images
83
  ```bash
84
  python download_and_process_nd_images.py --save_dir Images
 
186
 
187
  For each task (or subset), the split is indicated by the CSV name (e.g., `classification_<split>.csv`). More information is provided in [Data Instances](#data-instances), above.
188
 
189
+ ## Example Code to Use the Segmentation Dataset
190
+
191
+ We provide an example code to use the FV-1200 segmentation dataset for convenience of users. Please install *pillow*, *numpy*, *pandas* and *matplotlib* before trying the code:
192
+
193
+ ```python
194
+ from PIL import Image
195
+ import os
196
+ import numpy as np
197
+ import pandas as pd
198
+ import matplotlib.pyplot as plt
199
+ import json
200
+
201
+ # Set the the fish_vista_repo_dir to the path of your cloned fish-vista HF repository. This code assumes you are running from within the fish-vista directory
202
+ fish_vista_repo_dir = '.'
203
+
204
+ # segmentation_masks/images contains the annotated segmentation maps for the traits.
205
+ # If image filename is <image_filename>.jpg, the corresponding annotation is contained in segmentation_masks/images/<image_filename>.png
206
+ seg_mask_path = os.path.join(fish_vista_repo_dir, 'segmentation_masks/images')
207
+
208
+ # seg_id_trait_map.json maps the annotation id to the corresponding trait name.
209
+ # For example, pixels annotated with 1 correspond to the trait: 'Head'
210
+ id_trait_map_file = os.path.join(fish_vista_repo_dir, 'segmentation_masks/seg_id_trait_map.json')
211
+ with open(id_trait_map_file, 'r') as f:
212
+ id_trait_map = json.load(f)
213
+
214
+ # Read a segmentation csv file
215
+ train_path = os.path.join(fish_vista_repo_dir, 'segmentation_train.csv')
216
+ train_df = pd.read_csv(train_path)
217
+
218
+ # Get image and segmentation mask of image at index 'idx'
219
+ idx = 0
220
+ img_filename = train_df.iloc[idx].filename
221
+ img_mask_filename = os.path.splitext(img_filename)[0]+'.png'
222
+ # Load and view the mask
223
+ img_mask = Image.open(os.path.join(seg_mask_path, img_mask_filename))
224
+ plt.imshow(img_mask)
225
+
226
+ # List the traits that are present in this image
227
+ img_mask_arr = np.asarray(img_mask)
228
+ print([id_trait_map[str(trait_id)] for trait_id in np.unique(img_mask_arr)])
229
+ ```
230
 
231
  ## Dataset Details
232