import pandas as pd import requests from PIL import Image from io import BytesIO import os from tqdm import tqdm import json import argparse parser = argparse.ArgumentParser(description='Download, process and save ND images') parser.add_argument('--save_dir', type=str, help='The directory where processed images will be saved') args = parser.parse_args() save_dir = args.save_dir if not os.path.exists('ND_Processing_Files'): raise Exception('The ND processing file directory is not found in your current working directory') if not os.path.exists(save_dir): os.mkdir(save_dir) nd_df = pd.read_csv(os.path.join('ND_Processing_Files', 'ND_data.csv')) with open(os.path.join('ND_Processing_Files', 'nd_filenames_bboxes_map.json'), 'r') as f: nd_filenames_bboxes_map = json.load(f) seg_mask_dir = os.path.join('ND_Processing_Files', 'ND_background_masks') padding = 20 for i, row in tqdm(nd_df.iterrows()): target_filename = row['filename'] download_url = row['original_url'] local_filename = 'temp.jpg' response = requests.get(download_url) # Ensure the request was successful response.raise_for_status() # Convert response content to a PIL Image image = Image.open(BytesIO(response.content)) target_bbox = nd_filenames_bboxes_map[target_filename] # crop the image left, upper, right, lower = target_bbox max_width, max_height = image.size padded_left = max(left - padding, 0) padded_upper = max(upper - padding, 0) padded_right = min(right + padding, max_width) padded_lower = min(lower + padding, max_height) # Crop the image using the adjusted, padded bounding box cropped_image = image.crop((padded_left, padded_upper, padded_right, padded_lower)) assert target_filename[-4] == '.', 'The code assumes we have . at the end' target_seg_mask_file = target_filename[:-4]+'.png' if target_seg_mask_file in os.listdir(seg_mask_dir): mask_image = Image.open(os.path.join(seg_mask_dir, target_seg_mask_file)).convert('L') else: print(f'Segmentation mask not found for target image {target_filename}. Skipping...') continue white_image = Image.new("RGB", cropped_image.size, (255, 255, 255)) result_image = Image.composite(cropped_image, white_image, mask_image) result_image.save(os.path.join(save_dir, target_filename))