Datasets:
imvladikon
commited on
Commit
•
d4b59cd
1
Parent(s):
9f0b37f
Create parashoot.py
Browse files- parashoot.py +134 -0
parashoot.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
from datasets.tasks import QuestionAnsweringExtractive
|
8 |
+
|
9 |
+
|
10 |
+
logger = datasets.logging.get_logger(__name__)
|
11 |
+
|
12 |
+
|
13 |
+
_CITATION = """\
|
14 |
+
@inproceedings{keren2021parashoot,
|
15 |
+
title={ParaShoot: A Hebrew Question Answering Dataset},
|
16 |
+
author={Keren, Omri and Levy, Omer},
|
17 |
+
booktitle={Proceedings of the 3rd Workshop on Machine Reading for Question Answering},
|
18 |
+
pages={106--112},
|
19 |
+
year={2021}
|
20 |
+
}
|
21 |
+
"""
|
22 |
+
|
23 |
+
_DESCRIPTION = """
|
24 |
+
A Hebrew question and answering dataset in the style of SQuAD, based on articles scraped from Wikipedia. The dataset contains a few thousand crowdsource-annotated pairs of questions and answers, in a setting suitable for few-shot learning.
|
25 |
+
"""
|
26 |
+
|
27 |
+
_URLS = {
|
28 |
+
"train": "data/train.tar.gz",
|
29 |
+
"validation": "data/dev.tar.gz",
|
30 |
+
"test": "data/test.tar.gz",
|
31 |
+
}
|
32 |
+
|
33 |
+
|
34 |
+
class ParashootConfig(datasets.BuilderConfig):
|
35 |
+
"""BuilderConfig for Parashoot."""
|
36 |
+
|
37 |
+
def __init__(self, **kwargs):
|
38 |
+
"""BuilderConfig for Parashoot.
|
39 |
+
Args:
|
40 |
+
**kwargs: keyword arguments forwarded to super.
|
41 |
+
"""
|
42 |
+
super(ParashootConfig, self).__init__(**kwargs)
|
43 |
+
|
44 |
+
|
45 |
+
class Parashoot(datasets.GeneratorBasedBuilder):
|
46 |
+
"""Parashoot: The Hebrew Question Answering Dataset. Version 1.1."""
|
47 |
+
|
48 |
+
BUILDER_CONFIGS = [
|
49 |
+
ParashootConfig(
|
50 |
+
version=datasets.Version("1.1.0", ""),
|
51 |
+
description=_DESCRIPTION,
|
52 |
+
),
|
53 |
+
]
|
54 |
+
|
55 |
+
def _info(self):
|
56 |
+
return datasets.DatasetInfo(
|
57 |
+
description=_DESCRIPTION,
|
58 |
+
features=datasets.Features(
|
59 |
+
{
|
60 |
+
"id": datasets.Value("string"),
|
61 |
+
"title": datasets.Value("string"),
|
62 |
+
"context": datasets.Value("string"),
|
63 |
+
"question": datasets.Value("string"),
|
64 |
+
"answers": datasets.features.Sequence(
|
65 |
+
{
|
66 |
+
"text": datasets.Value("string"),
|
67 |
+
"answer_start": datasets.Value("int32"),
|
68 |
+
}
|
69 |
+
),
|
70 |
+
}
|
71 |
+
),
|
72 |
+
# No default supervised_keys (as we have to pass both question
|
73 |
+
# and context as input).
|
74 |
+
supervised_keys=None,
|
75 |
+
homepage="https://github.com/omrikeren/ParaShoot",
|
76 |
+
citation=_CITATION,
|
77 |
+
task_templates=[
|
78 |
+
QuestionAnsweringExtractive(
|
79 |
+
question_column="question",
|
80 |
+
context_column="context",
|
81 |
+
answers_column="answers",
|
82 |
+
)
|
83 |
+
],
|
84 |
+
)
|
85 |
+
|
86 |
+
def _split_generators(self, dl_manager):
|
87 |
+
downloaded_files = dl_manager.download_and_extract(_URLS)
|
88 |
+
|
89 |
+
return [
|
90 |
+
datasets.SplitGenerator(
|
91 |
+
name=datasets.Split.TRAIN,
|
92 |
+
gen_kwargs={
|
93 |
+
"filepath": downloaded_files["train"],
|
94 |
+
"basename": "train.jsonl",
|
95 |
+
},
|
96 |
+
),
|
97 |
+
datasets.SplitGenerator(
|
98 |
+
name=datasets.Split.VALIDATION,
|
99 |
+
gen_kwargs={
|
100 |
+
"filepath": downloaded_files["validation"],
|
101 |
+
"basename": "dev.jsonl",
|
102 |
+
},
|
103 |
+
),
|
104 |
+
datasets.SplitGenerator(
|
105 |
+
name=datasets.Split.TEST,
|
106 |
+
gen_kwargs={
|
107 |
+
"filepath": downloaded_files["test"],
|
108 |
+
"basename": "test.jsonl",
|
109 |
+
},
|
110 |
+
),
|
111 |
+
]
|
112 |
+
|
113 |
+
def _generate_examples(self, filepath, basename):
|
114 |
+
"""This function returns the examples in the raw (text) form."""
|
115 |
+
logger.info("generating examples from = %s", filepath)
|
116 |
+
key = 0
|
117 |
+
with open(os.path.join(filepath, basename), encoding="utf-8") as f:
|
118 |
+
for line in f:
|
119 |
+
article = json.loads(line)
|
120 |
+
title = article.get("title", "")
|
121 |
+
context = article["context"]
|
122 |
+
answer_starts = article["answers"]["answer_start"]
|
123 |
+
answers = article["answers"]["text"]
|
124 |
+
yield key, {
|
125 |
+
"title": title,
|
126 |
+
"context": context,
|
127 |
+
"question": article["question"],
|
128 |
+
"id": article["id"],
|
129 |
+
"answers": {
|
130 |
+
"answer_start": answer_starts,
|
131 |
+
"text": answers,
|
132 |
+
},
|
133 |
+
}
|
134 |
+
key += 1
|