code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" A__ : int = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def _snake_case ( lowerCamelCase__ : dict , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any] ) -> list[str]: lowerCamelCase_ : Optional[int] =set() # keep track of all the paths to be checked lowerCamelCase_ : Optional[Any] =[[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue lowerCamelCase_ : str =queue.pop(0 ) # get the last node from the path lowerCamelCase_ : List[Any] =path[-1] if node not in explored: lowerCamelCase_ : Optional[int] =graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: lowerCamelCase_ : Any =list(lowerCamelCase__ ) new_path.append(lowerCamelCase__ ) queue.append(lowerCamelCase__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(lowerCamelCase__ ) # in case there's no path between the 2 nodes return [] def _snake_case ( lowerCamelCase__ : dict , lowerCamelCase__ : Dict , lowerCamelCase__ : str ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 lowerCamelCase_ : Any =[start] lowerCamelCase_ : Dict =set(lowerCamelCase__ ) # Keep tab on distances from `start` node. lowerCamelCase_ : Union[str, Any] ={start: 0, target: -1} while queue: lowerCamelCase_ : int =queue.pop(0 ) if node == target: lowerCamelCase_ : Union[str, Any] =( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(lowerCamelCase__ ) queue.append(lowerCamelCase__ ) lowerCamelCase_ : str =dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
144
"""simple docstring""" import math def _snake_case ( lowerCamelCase__ : list , lowerCamelCase__ : int ) -> int: lowerCamelCase_ : int =len(lowerCamelCase__ ) lowerCamelCase_ : List[Any] =int(math.floor(math.sqrt(lowerCamelCase__ ) ) ) lowerCamelCase_ : List[Any] =0 while arr[min(lowerCamelCase__ , lowerCamelCase__ ) - 1] < x: lowerCamelCase_ : str =step step += int(math.floor(math.sqrt(lowerCamelCase__ ) ) ) if prev >= n: return -1 while arr[prev] < x: lowerCamelCase_ : Dict =prev + 1 if prev == min(lowerCamelCase__ , lowerCamelCase__ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A__ : List[Any] = input('Enter numbers separated by a comma:\n').strip() A__ : Optional[Any] = [int(item) for item in user_input.split(',')] A__ : List[str] = int(input('Enter the number to be searched:\n')) A__ : Any = jump_search(arr, x) if res == -1: print('Number not found!') else: print(f'Number {x} is at index {res}')
144
1
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__=7, lowerCamelCase__=3, lowerCamelCase__=18, lowerCamelCase__=30, lowerCamelCase__=400, lowerCamelCase__=True, lowerCamelCase__=None, lowerCamelCase__=True, lowerCamelCase__=False, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=[0.5, 0.5, 0.5], lowerCamelCase__=[0.5, 0.5, 0.5], ): A : List[str] = parent A : Dict = batch_size A : str = num_channels A : List[Any] = image_size A : List[Any] = min_resolution A : Tuple = max_resolution A : Any = do_resize A : Optional[int] = size if size is not None else {"""height""": 18, """width""": 20} A : Tuple = do_thumbnail A : List[str] = do_align_axis A : Optional[int] = do_pad A : List[Any] = do_normalize A : Optional[Any] = image_mean A : str = image_std def _lowerCAmelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Any = DonutImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self ): A : Tuple = DonutImageProcessingTester(self ) @property def _lowerCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self ): A : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__, """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__, """size""" ) ) self.assertTrue(hasattr(lowerCamelCase__, """do_thumbnail""" ) ) self.assertTrue(hasattr(lowerCamelCase__, """do_align_long_axis""" ) ) self.assertTrue(hasattr(lowerCamelCase__, """do_pad""" ) ) self.assertTrue(hasattr(lowerCamelCase__, """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase__, """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase__, """image_std""" ) ) def _lowerCAmelCase ( self ): A : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {"""height""": 18, """width""": 20} ) A : Dict = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order A : Any = self.image_processing_class.from_dict(self.image_processor_dict, size=(42, 84) ) self.assertEqual(image_processor.size, {"""height""": 84, """width""": 42} ) def _lowerCAmelCase ( self ): pass @is_flaky() def _lowerCAmelCase ( self ): # Initialize image_processing A : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A : List[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__, Image.Image ) # Test not batched input A : Optional[int] = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ), ) # Test batched A : List[Any] = image_processing(lowerCamelCase__, return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ), ) @is_flaky() def _lowerCAmelCase ( self ): # Initialize image_processing A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A : List[str] = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase__, numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__, np.ndarray ) # Test not batched input A : Dict = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ), ) # Test batched A : List[Any] = image_processing(lowerCamelCase__, return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ), ) @is_flaky() def _lowerCAmelCase ( self ): # Initialize image_processing A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A : Dict = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase__, torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__, torch.Tensor ) # Test not batched input A : Tuple = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ), ) # Test batched A : Union[str, Any] = image_processing(lowerCamelCase__, return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ), )
115
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() A : Union[str, Any] = nn.Linear(3, 4 ) A : Union[str, Any] = nn.BatchNormad(4 ) A : Optional[Any] = nn.Linear(4, 5 ) def _lowerCAmelCase ( self, lowerCamelCase__ ): return self.lineara(self.batchnorm(self.lineara(lowerCamelCase__ ) ) ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def _lowerCAmelCase ( self, lowerCamelCase__, *lowerCamelCase__, **lowerCamelCase__ ): return (args[0] + 1,) + args[1:], kwargs class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): return output + 1 class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): A : Tuple = ModelForTest() A : Any = ModelHook() add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) self.assertEqual(test_model._hf_hook, lowerCamelCase__ ) self.assertTrue(hasattr(lowerCamelCase__, """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__, """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ), ["""x"""] ) remove_hook_from_module(lowerCamelCase__ ) self.assertFalse(hasattr(lowerCamelCase__, """_hf_hook""" ) ) self.assertFalse(hasattr(lowerCamelCase__, """_old_forward""" ) ) def _lowerCAmelCase ( self ): A : Tuple = ModelForTest() A : Optional[int] = ModelHook() add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) add_hook_to_module(lowerCamelCase__, lowerCamelCase__, append=lowerCamelCase__ ) self.assertEqual(isinstance(test_model._hf_hook, lowerCamelCase__ ), lowerCamelCase__ ) self.assertEqual(len(test_model._hf_hook.hooks ), 2 ) self.assertTrue(hasattr(lowerCamelCase__, """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__, """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ), ["""x"""] ) remove_hook_from_module(lowerCamelCase__ ) self.assertFalse(hasattr(lowerCamelCase__, """_hf_hook""" ) ) self.assertFalse(hasattr(lowerCamelCase__, """_old_forward""" ) ) def _lowerCAmelCase ( self ): A : Any = ModelForTest() A : Tuple = torch.randn(2, 3 ) A : Optional[int] = test_model(x + 1 ) A : List[str] = test_model(x + 2 ) A : List[str] = PreForwardHook() add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) A : List[str] = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__, lowerCamelCase__, atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain A : Optional[Any] = PreForwardHook() add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) A : Tuple = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__, lowerCamelCase__, atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks A : Any = SequentialHook(PreForwardHook(), PreForwardHook() ) add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) A : Optional[Any] = test_model(lowerCamelCase__ ) assert torch.allclose(lowerCamelCase__, lowerCamelCase__, atol=1e-5 ) def _lowerCAmelCase ( self ): A : Tuple = ModelForTest() A : Any = torch.randn(2, 3 ) A : Any = test_model(lowerCamelCase__ ) A : List[Any] = PostForwardHook() add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) A : str = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__, output + 1, atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain A : Tuple = PostForwardHook() add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) A : Optional[int] = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__, output + 1, atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks A : Dict = SequentialHook(PostForwardHook(), PostForwardHook() ) add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) A : List[str] = test_model(lowerCamelCase__ ) assert torch.allclose(lowerCamelCase__, output + 2, atol=1e-5 ) def _lowerCAmelCase ( self ): A : List[Any] = ModelForTest() A : Tuple = torch.randn(2, 3 ) A : Union[str, Any] = test_model(lowerCamelCase__ ) A : List[Any] = PostForwardHook() add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) A : List[Any] = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__, output + 1 ) ) self.assertTrue(outputa.requires_grad ) A : int = True A : Tuple = test_model(lowerCamelCase__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def _lowerCAmelCase ( self ): A : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara, AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm, AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara, AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device, torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device, torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device, torch.device(0 ) ) self.assertEqual(model.lineara.weight.device, torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device A : str = torch.randn(2, 3 ) A : int = model(lowerCamelCase__ ) self.assertEqual(output.device, torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(lowerCamelCase__, AlignDevicesHook(io_same_device=lowerCamelCase__ ) ) A : int = torch.randn(2, 3 ).to(0 ) A : str = model(lowerCamelCase__ ) self.assertEqual(output.device, torch.device(0 ) ) def _lowerCAmelCase ( self ): A : List[str] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # This will move each submodule on different devices A : int = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara, AlignDevicesHook(**lowerCamelCase__ ) ) add_hook_to_module(model.batchnorm, AlignDevicesHook(**lowerCamelCase__ ) ) add_hook_to_module(model.lineara, AlignDevicesHook(**lowerCamelCase__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A : Dict = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device, lowerCamelCase__ ) A : int = torch.randn(2, 3 ) A : List[Any] = model(lowerCamelCase__ ) self.assertEqual(output.device, lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # Now test with buffers included in the offload A : int = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara, AlignDevicesHook(**lowerCamelCase__ ) ) add_hook_to_module(model.batchnorm, AlignDevicesHook(**lowerCamelCase__ ) ) add_hook_to_module(model.lineara, AlignDevicesHook(**lowerCamelCase__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device, torch.device("""meta""" ) ) A : int = torch.randn(2, 3 ) A : str = model(lowerCamelCase__ ) self.assertEqual(output.device, lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) def _lowerCAmelCase ( self ): A : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # This will move each submodule on different devices A : Tuple = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(lowerCamelCase__, execution_device=lowerCamelCase__, offload=lowerCamelCase__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A : Optional[int] = torch.device(lowerCamelCase__ ) self.assertEqual(model.batchnorm.running_mean.device, lowerCamelCase__ ) A : List[str] = torch.randn(2, 3 ) A : Optional[int] = model(lowerCamelCase__ ) self.assertEqual(output.device, lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCamelCase__ ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(lowerCamelCase__, execution_device=lowerCamelCase__, offload=lowerCamelCase__, offload_buffers=lowerCamelCase__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device, torch.device("""meta""" ) ) A : List[str] = torch.randn(2, 3 ) A : List[str] = model(lowerCamelCase__ ) self.assertEqual(output.device, lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCamelCase__ ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) def _lowerCAmelCase ( self ): A : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # This will move each submodule on different devices A : List[str] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( lowerCamelCase__, execution_device=lowerCamelCase__, offload=lowerCamelCase__, weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A : Any = torch.device(lowerCamelCase__ ) self.assertEqual(model.batchnorm.running_mean.device, lowerCamelCase__ ) A : Optional[Any] = torch.randn(2, 3 ) A : Tuple = model(lowerCamelCase__ ) self.assertEqual(output.device, lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCamelCase__ ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( lowerCamelCase__, execution_device=lowerCamelCase__, offload=lowerCamelCase__, weights_map=model.state_dict(), offload_buffers=lowerCamelCase__, ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device, torch.device("""meta""" ) ) A : List[Any] = torch.randn(2, 3 ) A : Dict = model(lowerCamelCase__ ) self.assertEqual(output.device, lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCamelCase__ ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) )
115
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart __UpperCAmelCase ={ "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } __UpperCAmelCase ={ "facebook/bart-base": 1_0_2_4, "facebook/bart-large": 1_0_2_4, "facebook/bart-large-mnli": 1_0_2_4, "facebook/bart-large-cnn": 1_0_2_4, "facebook/bart-large-xsum": 1_0_2_4, "yjernite/bart_eli5": 1_0_2_4, } @lru_cache() def __lowerCAmelCase ( ) -> Union[str, Any]: __lowerCamelCase = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __lowerCamelCase = bs[:] __lowerCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase__ ) cs.append(2**8 + n ) n += 1 __lowerCamelCase = [chr(UpperCamelCase__ ) for n in cs] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) ) def __lowerCAmelCase ( UpperCamelCase__ ) -> Dict: __lowerCamelCase = set() __lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase = char return pairs class a__ ( UpperCAmelCase__ ): lowerCamelCase : Tuple =VOCAB_FILES_NAMES lowerCamelCase : Any =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Any =["input_ids", "attention_mask"] def __init__( self : List[str] , a : Tuple , a : Any , a : Optional[Any]="replace" , a : int="<s>" , a : Union[str, Any]="</s>" , a : int="</s>" , a : Tuple="<s>" , a : Any="<unk>" , a : Tuple="<pad>" , a : Dict="<mask>" , a : Any=False , **a : str , ): """simple docstring""" __lowerCamelCase = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else bos_token __lowerCamelCase = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else eos_token __lowerCamelCase = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else sep_token __lowerCamelCase = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else cls_token __lowerCamelCase = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else unk_token __lowerCamelCase = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( errors=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , add_prefix_space=a , **a , ) with open(a , encoding='''utf-8''' ) as vocab_handle: __lowerCamelCase = json.load(a ) __lowerCamelCase = {v: k for k, v in self.encoder.items()} __lowerCamelCase = errors # how to handle errors in decoding __lowerCamelCase = bytes_to_unicode() __lowerCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(a , encoding='''utf-8''' ) as merges_handle: __lowerCamelCase = merges_handle.read().split('''\n''' )[1:-1] __lowerCamelCase = [tuple(merge.split() ) for merge in bpe_merges] __lowerCamelCase = dict(zip(a , range(len(a ) ) ) ) __lowerCamelCase = {} __lowerCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowerCamelCase = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return len(self.encoder ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__ ( self : int , a : List[Any] ): """simple docstring""" if token in self.cache: return self.cache[token] __lowerCamelCase = tuple(a ) __lowerCamelCase = get_pairs(a ) if not pairs: return token while True: __lowerCamelCase = min(a , key=lambda a : self.bpe_ranks.get(a , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase , __lowerCamelCase = bigram __lowerCamelCase = [] __lowerCamelCase = 0 while i < len(a ): try: __lowerCamelCase = word.index(a , a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCamelCase = j if word[i] == first and i < len(a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase = tuple(a ) __lowerCamelCase = new_word if len(a ) == 1: break else: __lowerCamelCase = get_pairs(a ) __lowerCamelCase = ''' '''.join(a ) __lowerCamelCase = word return word def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : Union[str, Any] ): """simple docstring""" __lowerCamelCase = [] for token in re.findall(self.pat , a ): __lowerCamelCase = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a ).split(''' ''' ) ) return bpe_tokens def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : Union[str, Any] ): """simple docstring""" return self.encoder.get(a , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : Dict ): """simple docstring""" return self.decoder.get(a ) def SCREAMING_SNAKE_CASE__ ( self : Any , a : int ): """simple docstring""" __lowerCamelCase = ''''''.join(a ) __lowerCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : str , a : Optional[str] = None ): """simple docstring""" if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase = os.path.join( a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join( a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a , ensure_ascii=a ) + '''\n''' ) __lowerCamelCase = 0 with open(a , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) __lowerCamelCase = token_index writer.write(''' '''.join(a ) + '''\n''' ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : List[int] , a : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] __lowerCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self : Dict , a : List[int] , a : Optional[List[int]] = None , a : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is None: return [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1, 1] + ([0] * len(a )) + [1] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : List[int] , a : Optional[List[int]] = None ): """simple docstring""" __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__ ( self : int , a : Any , a : List[Any]=False , **a : Union[str, Any] ): """simple docstring""" __lowerCamelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(a ) > 0 and not text[0].isspace()): __lowerCamelCase = ''' ''' + text return (text, kwargs)
67
'''simple docstring''' import logging import os from .state import PartialState class a__ ( logging.LoggerAdapter ): @staticmethod def SCREAMING_SNAKE_CASE__ ( a : Optional[Any] ): """simple docstring""" __lowerCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def SCREAMING_SNAKE_CASE__ ( self : int , a : Optional[int] , a : str , *a : Optional[int] , **a : List[Any] ): """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) __lowerCamelCase = kwargs.pop('''main_process_only''' , a ) __lowerCamelCase = kwargs.pop('''in_order''' , a ) if self.isEnabledFor(a ): if self._should_log(a ): __lowerCamelCase , __lowerCamelCase = self.process(a , a ) self.logger.log(a , a , *a , **a ) elif in_order: __lowerCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: __lowerCamelCase , __lowerCamelCase = self.process(a , a ) self.logger.log(a , a , *a , **a ) state.wait_for_everyone() def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ = None ) -> Optional[int]: if log_level is None: __lowerCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , UpperCamelCase__ ) __lowerCamelCase = logging.getLogger(UpperCamelCase__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(UpperCamelCase__ , {} )
67
1
def UpperCamelCase ( _A = 10, _A = 22 ): """simple docstring""" __magic_name__ : Any = range(1, _A ) __magic_name__ : Any = range(1, _A ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
138
from decimal import Decimal, getcontext from math import ceil, factorial def UpperCamelCase ( _A ): """simple docstring""" if not isinstance(_A, _A ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) __magic_name__ : Dict = precision __magic_name__ : str = ceil(precision / 14 ) __magic_name__ : List[str] = 426880 * Decimal(10005 ).sqrt() __magic_name__ : List[Any] = 1 __magic_name__ : Dict = 13591409 __magic_name__ : Tuple = Decimal(_A ) for k in range(1, _A ): __magic_name__ : List[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_A ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __magic_name__: Tuple = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
138
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = "▁" _A = {"vocab_file": "spiece.model"} _A = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } _A = { "google/reformer-crime-and-punishment": 52_42_88, } class _lowerCAmelCase ( __a ): _lowercase =VOCAB_FILES_NAMES _lowercase =PRETRAINED_VOCAB_FILES_MAP _lowercase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase =['''input_ids''', '''attention_mask'''] def __init__( self , _UpperCamelCase , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase=[] , _UpperCamelCase = None , **_UpperCamelCase , ) -> None: lowerCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) lowerCAmelCase_ = vocab_file lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @property def __a ( self ) -> Optional[Any]: return self.sp_model.get_piece_size() def __a ( self ) -> Dict[str, int]: lowerCAmelCase_ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: lowerCAmelCase_ = self.__dict__.copy() lowerCAmelCase_ = None return state def __setstate__( self , _UpperCamelCase ) -> Any: lowerCAmelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase_ = {} lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __a ( self , _UpperCamelCase ) -> List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def __a ( self , _UpperCamelCase ) -> Union[str, Any]: return self.sp_model.piece_to_id(_UpperCamelCase ) def __a ( self , _UpperCamelCase ) -> Optional[Any]: if index < self.sp_model.get_piece_size(): lowerCAmelCase_ = self.sp_model.IdToPiece(_UpperCamelCase ) return token def __a ( self , _UpperCamelCase ) -> str: lowerCAmelCase_ = [] lowerCAmelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_UpperCamelCase ) + token lowerCAmelCase_ = [] else: current_sub_tokens.append(_UpperCamelCase ) out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def __a ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase_ = os.path.join( _UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , "wb" ) as fi: lowerCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
231
from pathlib import Path import fire def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : int ): """simple docstring""" lowerCAmelCase_ = Path(__lowerCAmelCase ) lowerCAmelCase_ = Path(__lowerCAmelCase ) dest_dir.mkdir(exist_ok=__lowerCAmelCase ) for path in src_dir.iterdir(): lowerCAmelCase_ = [x.rstrip() for x in list(path.open().readlines() )][:n] lowerCAmelCase_ = dest_dir.joinpath(path.name ) print(__lowerCAmelCase ) dest_path.open("w" ).write("\n".join(__lowerCAmelCase ) ) if __name__ == "__main__": fire.Fire(minify)
231
1
"""simple docstring""" import flax.linen as nn import jax import jax.numpy as jnp class _lowerCamelCase ( nn.Module ): UpperCAmelCase_ = 42 UpperCAmelCase_ = jnp.floataa def snake_case_ (self ) -> Optional[int]: UpperCamelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__(self , __a ) -> Union[str, Any]: UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = hidden_states.shape UpperCamelCase = jax.image.resize( __a , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) UpperCamelCase = self.conv(__a ) return hidden_states class _lowerCamelCase ( nn.Module ): UpperCAmelCase_ = 42 UpperCAmelCase_ = jnp.floataa def snake_case_ (self ) -> Union[str, Any]: UpperCamelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__(self , __a ) -> List[str]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) UpperCamelCase = self.conv(__a ) return hidden_states class _lowerCamelCase ( nn.Module ): UpperCAmelCase_ = 42 UpperCAmelCase_ = None UpperCAmelCase_ = 0.0 UpperCAmelCase_ = None UpperCAmelCase_ = jnp.floataa def snake_case_ (self ) -> List[Any]: UpperCamelCase = self.in_channels if self.out_channels is None else self.out_channels UpperCamelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) UpperCamelCase = nn.Conv( __a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCamelCase = nn.Dense(__a , dtype=self.dtype ) UpperCamelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) UpperCamelCase = nn.Dropout(self.dropout_prob ) UpperCamelCase = nn.Conv( __a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCamelCase = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut UpperCamelCase = None if use_nin_shortcut: UpperCamelCase = nn.Conv( __a , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__(self , __a , __a , __a=True ) -> List[Any]: UpperCamelCase = hidden_states UpperCamelCase = self.norma(__a ) UpperCamelCase = nn.swish(__a ) UpperCamelCase = self.conva(__a ) UpperCamelCase = self.time_emb_proj(nn.swish(__a ) ) UpperCamelCase = jnp.expand_dims(jnp.expand_dims(__a , 1 ) , 1 ) UpperCamelCase = hidden_states + temb UpperCamelCase = self.norma(__a ) UpperCamelCase = nn.swish(__a ) UpperCamelCase = self.dropout(__a , __a ) UpperCamelCase = self.conva(__a ) if self.conv_shortcut is not None: UpperCamelCase = self.conv_shortcut(__a ) return hidden_states + residual
244
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record lowerCAmelCase__ = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' lowerCAmelCase__ = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' lowerCAmelCase__ = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" return float((preds == labels).mean() ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="binary" ): """simple docstring""" UpperCamelCase = simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE , average=_SCREAMING_SNAKE_CASE ) ) return { "accuracy": acc, "f1": fa, } def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = {} for id_pred, label in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase = F"{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}" UpperCamelCase = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCamelCase = [(pred, label)] UpperCamelCase , UpperCamelCase = [], [] for question, preds_labels in question_map.items(): UpperCamelCase , UpperCamelCase = zip(*_SCREAMING_SNAKE_CASE ) UpperCamelCase = fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE , average="macro" ) fas.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = int(sum(pred == label for pred, label in preds_labels ) == len(_SCREAMING_SNAKE_CASE ) ) ems.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = float(sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): def snake_case_ (self ) -> Dict: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def snake_case_ (self ) -> Tuple: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def snake_case_ (self , __a , __a ) -> str: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__a , __a )} elif self.config_name == "cb": return acc_and_fa(__a , __a , fa_avg="macro" ) elif self.config_name == "record": UpperCamelCase = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] UpperCamelCase = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(__a , __a )[0] elif self.config_name == "multirc": return evaluate_multirc(__a , __a ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__a , __a )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
244
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( A_, unittest.TestCase ): lowercase__ = DiTPipeline lowercase__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS lowercase__ = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } lowercase__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS lowercase__ = False def __magic_name__ ( self : Union[str, Any] ) -> int: '''simple docstring''' torch.manual_seed(0 ) A__ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=snake_case_ , activation_fn="gelu-approximate" , num_embeds_ada_norm=1_000 , norm_type="ada_norm_zero" , norm_elementwise_affine=snake_case_ , ) A__ = AutoencoderKL() A__ = DDIMScheduler() A__ = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def __magic_name__ ( self : List[str] , snake_case_ : Optional[Any] , snake_case_ : Dict=0 ) -> Any: '''simple docstring''' if str(snake_case_ ).startswith("mps" ): A__ = torch.manual_seed(snake_case_ ) else: A__ = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) A__ = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __magic_name__ ( self : Optional[int] ) -> str: '''simple docstring''' A__ = "cpu" A__ = self.get_dummy_components() A__ = self.pipeline_class(**snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) A__ = self.get_dummy_inputs(snake_case_ ) A__ = pipe(**snake_case_ ).images A__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) A__ = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) A__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case_ , 1e-3 ) def __magic_name__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=snake_case_ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __magic_name__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class UpperCAmelCase_ ( unittest.TestCase ): def __magic_name__ ( self : Dict ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : List[Any] ) -> Dict: '''simple docstring''' A__ = torch.manual_seed(0 ) A__ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) A__ = ["vase", "umbrella", "white shark", "white wolf"] A__ = pipe.get_label_ids(snake_case_ ) A__ = pipe(snake_case_ , generator=snake_case_ , num_inference_steps=40 , output_type="np" ).images for word, image in zip(snake_case_ , snake_case_ ): A__ = load_numpy( F"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def __magic_name__ ( self : Any ) -> Tuple: '''simple docstring''' A__ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) A__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) A__ = ["vase", "umbrella"] A__ = pipe.get_label_ids(snake_case_ ) A__ = torch.manual_seed(0 ) A__ = pipe(snake_case_ , generator=snake_case_ , num_inference_steps=25 , output_type="np" ).images for word, image in zip(snake_case_ , snake_case_ ): A__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" F"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
247
"""simple docstring""" import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): SCREAMING_SNAKE_CASE = True from torch.cuda.amp import autocast SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowercase__ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowercase__ = field( default=A_, metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''}, ) lowercase__ = field( default=A_, metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) lowercase__ = field( default=A_, metadata={'''help''': '''Whether to log verbose messages or not.'''}, ) lowercase__ = field( default=2.0, metadata={'''help''': '''Maximum temperature for gumbel softmax.'''} ) lowercase__ = field( default=0.5, metadata={'''help''': '''Minimum temperature for gumbel softmax.'''} ) lowercase__ = field( default=0.99_99_95, metadata={'''help''': '''Decay of gumbel temperature during training.'''} ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) A__ = logging.WARNING if model_args.verbose_logging: A__ = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): A__ = logging.INFO logger.setLevel(lowercase_ ) @dataclass class UpperCAmelCase_ : lowercase__ = field( default=A_, metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) lowercase__ = field( default=A_, metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowercase__ = field( default='''train''', metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' }, ) lowercase__ = field( default='''validation''', metadata={ '''help''': ( '''The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'''' ) }, ) lowercase__ = field( default='''file''', metadata={'''help''': '''Column in the dataset that contains speech file path. Defaults to \'file\''''}, ) lowercase__ = field( default=A_, metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) lowercase__ = field( default=1, metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' }, ) lowercase__ = field( default=A_, metadata={'''help''': '''The number of processes to use for the preprocessing.'''}, ) lowercase__ = field( default=20.0, metadata={'''help''': '''Filter audio files that are longer than `max_duration_in_seconds` seconds'''} ) @dataclass class UpperCAmelCase_ : lowercase__ = 42 lowercase__ = 42 lowercase__ = "longest" lowercase__ = None lowercase__ = None def __call__( self : Tuple , snake_case_ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: '''simple docstring''' A__ = self.feature_extractor.pad( snake_case_ , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) A__ = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) A__ = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula A__ = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) A__ = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to A__ = 1 A__ = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices A__ = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=snake_case_ , min_masks=2 , ) return batch class UpperCAmelCase_ ( A_ ): def __init__( self : Any , *snake_case_ : Dict , snake_case_ : Optional[int]=1 , snake_case_ : str=0 , snake_case_ : str=1.0 , **snake_case_ : List[str] ) -> List[str]: '''simple docstring''' super().__init__(*snake_case_ , **snake_case_ ) A__ = 0 A__ = max_gumbel_temp A__ = min_gumbel_temp A__ = gumbel_temp_decay def __magic_name__ ( self : Tuple , snake_case_ : nn.Module , snake_case_ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: '''simple docstring''' model.train() A__ = self._prepare_inputs(snake_case_ ) if self.use_amp: with autocast(): A__ = self.compute_loss(snake_case_ , snake_case_ ) else: A__ = self.compute_loss(snake_case_ , snake_case_ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": A__ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": A__ = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: A__ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(snake_case_ ).backward() elif self.use_apex: with amp.scale_loss(snake_case_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(snake_case_ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def _SCREAMING_SNAKE_CASE ( ) -> List[str]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) A__, A__, A__ = parser.parse_args_into_dataclasses() configure_logger(lowercase_ , lowercase_ ) # Downloading and loading a dataset from the hub. A__ = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" A__ = DatasetDict() A__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" , cache_dir=model_args.cache_dir , ) A__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" A__ = DatasetDict() A__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) A__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}""" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported A__ = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=lowercase_ ) def prepare_dataset(lowercase_ ): # check that all files have the correct sampling rate A__, A__ = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays A__ = datasets.map( lowercase_ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long A__ = vectorized_datasets.filter( lambda lowercase_ : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(lowercase_ ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` A__ = vectorized_datasets.map( lowercase_ , batched=lowercase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 A__ = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) A__ = WavaVecaForPreTraining(lowercase_ ) A__ = DataCollatorForWavaVecaPretraining(model=lowercase_ , feature_extractor=lowercase_ ) A__ = WavaVecaPreTrainer( model=lowercase_ , data_collator=lowercase_ , args=lowercase_ , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=lowercase_ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
247
1
from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=snake_case__ ): lowerCAmelCase : Optional[Any] = ["""keras_nlp"""] def __init__( self , *UpperCAmelCase__ , **UpperCAmelCase__ ): requires_backends(self , ["keras_nlp"] )
365
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def UpperCamelCase ( _A : str , _A : str )-> Any: """simple docstring""" A__ = RobertaPreLayerNormConfig.from_pretrained( _A , architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict A__ = torch.load(hf_hub_download(repo_id=_A , filename="pytorch_model.bin" ) ) A__ = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): A__ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue A__ = tensor_value A__ = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=_A , config=_A , state_dict=_A ) model.save_pretrained(_A ) # convert tokenizer A__ = AutoTokenizer.from_pretrained(_A ) tokenizer.save_pretrained(_A ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint-repo", default=None, type=str, required=True, help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase_ : List[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
198
0
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase : Optional[Any] = 16 UpperCAmelCase : Dict = 32 def lowerCamelCase ( _UpperCamelCase : Accelerator , _UpperCamelCase : int = 1_6 ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : str = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __UpperCAmelCase : str = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_UpperCamelCase : str ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase : int = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_UpperCamelCase , max_length=_UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCAmelCase : List[str] = datasets.map( _UpperCamelCase , batched=_UpperCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCAmelCase : Optional[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_UpperCamelCase : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCAmelCase : Tuple = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCAmelCase : List[str] = 1_6 elif accelerator.mixed_precision != "no": __UpperCAmelCase : Dict = 8 else: __UpperCAmelCase : Tuple = None return tokenizer.pad( _UpperCamelCase , padding="""longest""" , max_length=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. __UpperCAmelCase : List[str] = DataLoader( tokenized_datasets["""train"""] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase : List[str] = mocked_dataloaders # noqa: F811 def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : List[Any] ) -> List[Any]: '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , _UpperCamelCase ) == "1": __UpperCAmelCase : Tuple = 2 # Initialize accelerator __UpperCAmelCase : Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCAmelCase : Any = config["""lr"""] __UpperCAmelCase : str = int(config["""num_epochs"""] ) __UpperCAmelCase : Tuple = int(config["""seed"""] ) __UpperCAmelCase : Dict = int(config["""batch_size"""] ) __UpperCAmelCase : Dict = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation __UpperCAmelCase : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCAmelCase : List[Any] = batch_size // MAX_GPU_BATCH_SIZE __UpperCAmelCase : Any = MAX_GPU_BATCH_SIZE set_seed(_UpperCamelCase ) __UpperCAmelCase ,__UpperCAmelCase : Dict = get_dataloaders(_UpperCamelCase , _UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCAmelCase : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCAmelCase : Any = model.to(accelerator.device ) # Instantiate optimizer __UpperCAmelCase : Optional[Any] = AdamW(params=model.parameters() , lr=_UpperCamelCase ) # Instantiate scheduler __UpperCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=_UpperCamelCase , num_warmup_steps=1_0_0 , num_training_steps=(len(_UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Tuple = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Now we train the model for epoch in range(_UpperCamelCase ): model.train() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCAmelCase : List[str] = model(**_UpperCamelCase ) __UpperCAmelCase : int = outputs.loss __UpperCAmelCase : Tuple = loss / gradient_accumulation_steps accelerator.backward(_UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() __UpperCAmelCase : Optional[int] = 0 for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCAmelCase : Any = model(**_UpperCamelCase ) __UpperCAmelCase : Dict = outputs.logits.argmax(dim=-1 ) __UpperCAmelCase ,__UpperCAmelCase : List[str] = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(_UpperCamelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples __UpperCAmelCase : List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] __UpperCAmelCase : Tuple = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=_UpperCamelCase , references=_UpperCamelCase , ) __UpperCAmelCase : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , _UpperCamelCase ) def lowerCamelCase ( ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_UpperCamelCase , default=_UpperCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __UpperCAmelCase : Optional[int] = parser.parse_args() __UpperCAmelCase : Any = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": main()
115
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = None __a = BloomTokenizerFast __a = BloomTokenizerFast __a = True __a = False __a = """tokenizer_file""" __a = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""} def lowerCamelCase__ ( self : int ): '''simple docstring''' super().setUp() __UpperCAmelCase : Any = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self : Any , **UpperCamelCase : Optional[int] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Any = self.get_rust_tokenizer() __UpperCAmelCase : Optional[Any] = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""] __UpperCAmelCase : int = [[2_175, 23_714, 73_173, 144_252, 2], [77, 132_619, 3_478, 368, 109_586, 35_433, 2]] __UpperCAmelCase : Dict = tokenizer.batch_encode_plus(UpperCamelCase )["""input_ids"""] self.assertListEqual(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : int = tokenizer.batch_decode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : int , UpperCamelCase : Any=6 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __UpperCAmelCase : Dict = """This is a simple input""" __UpperCAmelCase : str = ["""This is a simple input 1""", """This is a simple input 2"""] __UpperCAmelCase : List[str] = ("""This is a simple input""", """This is a pair""") __UpperCAmelCase : Dict = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests try: tokenizer_r.encode(UpperCamelCase , max_length=UpperCamelCase ) tokenizer_r.encode_plus(UpperCamelCase , max_length=UpperCamelCase ) tokenizer_r.batch_encode_plus(UpperCamelCase , max_length=UpperCamelCase ) tokenizer_r.encode(UpperCamelCase , max_length=UpperCamelCase ) tokenizer_r.batch_encode_plus(UpperCamelCase , max_length=UpperCamelCase ) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""" ) __UpperCAmelCase : Union[str, Any] = None # Hotfixing padding = None self.assertRaises(UpperCamelCase , tokenizer_r.encode , UpperCamelCase , max_length=UpperCamelCase , padding="""max_length""" ) # Simple input self.assertRaises(UpperCamelCase , tokenizer_r.encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding="""max_length""" ) # Simple input self.assertRaises( UpperCamelCase , tokenizer_r.batch_encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding="""max_length""" , ) # Pair input self.assertRaises(UpperCamelCase , tokenizer_r.encode , UpperCamelCase , max_length=UpperCamelCase , padding="""max_length""" ) # Pair input self.assertRaises(UpperCamelCase , tokenizer_r.encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding="""max_length""" ) # Pair input self.assertRaises( UpperCamelCase , tokenizer_r.batch_encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding="""max_length""" , ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.get_rust_tokenizer() __UpperCAmelCase : Optional[Any] = load_dataset("""xnli""" , """all_languages""" , split="""test""" , streaming=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = next(iter(UpperCamelCase ) )["""premise"""] # pick up one data __UpperCAmelCase : Any = list(sample_data.values() ) __UpperCAmelCase : Optional[Any] = list(map(tokenizer.encode , UpperCamelCase ) ) __UpperCAmelCase : List[Any] = [tokenizer.decode(UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase ) for x in output_tokens] self.assertListEqual(UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
115
1
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> str: # A mock response for an HTTP head request to emulate server down __UpperCamelCase :Optional[Any] = mock.Mock() __UpperCamelCase :int = 500 __UpperCamelCase :List[Any] = {} __UpperCamelCase :List[str] = HTTPError __UpperCamelCase :List[str] = {} # Download this model to make sure it's in the cache. __UpperCamelCase :str = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=__lowercase) as mock_head: __UpperCamelCase :Optional[int] = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''') # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def UpperCamelCase__ ( self) -> Optional[Any]: # A mock response for an HTTP head request to emulate server down __UpperCamelCase :List[Any] = mock.Mock() __UpperCamelCase :List[Any] = 500 __UpperCamelCase :int = {} __UpperCamelCase :List[Any] = HTTPError __UpperCamelCase :Union[str, Any] = {} # Download this model to make sure it's in the cache. __UpperCamelCase :Optional[int] = GPTaTokenizerFast.from_pretrained('''gpt2''') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=__lowercase) as mock_head: __UpperCamelCase :Optional[int] = GPTaTokenizerFast.from_pretrained('''gpt2''') # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self) -> Tuple: # This test is for deprecated behavior and can be removed in v5 try: __UpperCamelCase :Any = tempfile.mktemp() with open(__lowercase , '''wb''') as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' , __lowercase) __UpperCamelCase :Dict = AlbertTokenizer.from_pretrained(__lowercase) finally: os.remove(__lowercase) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json'''): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''' , '''wb''') as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''' , __lowercase) __UpperCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''') # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_000) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''') def UpperCamelCase__ ( self) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 __UpperCamelCase :Any = AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''') @is_staging_test class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' a__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def UpperCamelCase__ ( cls) -> Dict: __UpperCamelCase :Union[str, Any] = TOKEN HfFolder.save_token(__lowercase) @classmethod def UpperCamelCase__ ( cls) -> str: try: delete_repo(token=cls._token , repo_id='''test-tokenizer''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-tokenizer-org''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-tokenizer''') except HTTPError: pass def UpperCamelCase__ ( self) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase :List[Any] = os.path.join(__lowercase , '''vocab.txt''') with open(__lowercase , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens])) __UpperCamelCase :Optional[Any] = BertTokenizer(__lowercase) tokenizer.push_to_hub('''test-tokenizer''' , use_auth_token=self._token) __UpperCamelCase :Dict = BertTokenizer.from_pretrained(f"""{USER}/test-tokenizer""") self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) # Reset repo delete_repo(token=self._token , repo_id='''test-tokenizer''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase , repo_id='''test-tokenizer''' , push_to_hub=__lowercase , use_auth_token=self._token) __UpperCamelCase :List[str] = BertTokenizer.from_pretrained(f"""{USER}/test-tokenizer""") self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) def UpperCamelCase__ ( self) -> Tuple: with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase :Optional[Any] = os.path.join(__lowercase , '''vocab.txt''') with open(__lowercase , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens])) __UpperCamelCase :int = BertTokenizer(__lowercase) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''' , use_auth_token=self._token) __UpperCamelCase :Optional[int] = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-tokenizer-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( __lowercase , repo_id='''valid_org/test-tokenizer-org''' , push_to_hub=__lowercase , use_auth_token=self._token) __UpperCamelCase :List[str] = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) @require_tokenizers def UpperCamelCase__ ( self) -> List[Any]: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase :Optional[int] = os.path.join(__lowercase , '''vocab.txt''') with open(__lowercase , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens])) __UpperCamelCase :Optional[Any] = CustomTokenizer(__lowercase) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token) __UpperCamelCase :Union[str, Any] = AutoTokenizer.from_pretrained(f"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=__lowercase) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''') # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase :int = os.path.join(__lowercase , '''vocab.txt''') with open(__lowercase , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens])) __UpperCamelCase :Tuple = BertTokenizerFast.from_pretrained(__lowercase) bert_tokenizer.save_pretrained(__lowercase) __UpperCamelCase :Optional[int] = CustomTokenizerFast.from_pretrained(__lowercase) tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token) __UpperCamelCase :Any = AutoTokenizer.from_pretrained(f"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=__lowercase) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizerFast''') __UpperCamelCase :List[Any] = AutoTokenizer.from_pretrained( f"""{USER}/test-dynamic-tokenizer""" , use_fast=__lowercase , trust_remote_code=__lowercase) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''') class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Dict = Trie() trie.add('''Hello 友達''') self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}}) trie.add('''Hello''') trie.data self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}}) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Any = Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''') , ['''[CLS] This is a extra_id_100''']) trie.add('''[CLS]''') trie.add('''extra_id_1''') trie.add('''extra_id_100''') self.assertEqual(trie.split('''[CLS] This is a extra_id_100''') , ['''[CLS]''', ''' This is a ''', '''extra_id_100''']) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :str = Trie() trie.add('''A''') self.assertEqual(trie.split('''ABC''') , ['''A''', '''BC''']) self.assertEqual(trie.split('''BCA''') , ['''BC''', '''A''']) def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :Union[str, Any] = Trie() trie.add('''TOKEN]''') trie.add('''[SPECIAL_TOKEN]''') self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''') , ['''This is something ''', '''[SPECIAL_TOKEN]''']) def UpperCamelCase__ ( self) -> int: __UpperCamelCase :Optional[Any] = Trie() trie.add('''A''') trie.add('''P''') trie.add('''[SPECIAL_TOKEN]''') self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''') , ['''This is something ''', '''[SPECIAL_TOKEN]''']) def UpperCamelCase__ ( self) -> int: __UpperCamelCase :Tuple = Trie() trie.add('''AB''') trie.add('''B''') trie.add('''C''') self.assertEqual(trie.split('''ABC''') , ['''AB''', '''C''']) def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :str = Trie() trie.add('''ABC''') trie.add('''B''') trie.add('''CD''') self.assertEqual(trie.split('''ABCD''') , ['''ABC''', '''D''']) def UpperCamelCase__ ( self) -> int: # Even if the offsets are wrong, we necessarily output correct string # parts. __UpperCamelCase :Dict = Trie() __UpperCamelCase :Optional[int] = trie.cut_text('''ABC''' , [0, 0, 2, 1, 2, 3]) self.assertEqual(__lowercase , ['''AB''', '''C'''])
363
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __lowercase = logging.get_logger(__name__) # General docstring __lowercase = '''MobileNetV1Config''' # Base docstring __lowercase = '''google/mobilenet_v1_1.0_224''' __lowercase = [1, 1024, 7, 7] # Image classification docstring __lowercase = '''google/mobilenet_v1_1.0_224''' __lowercase = '''tabby, tabby cat''' __lowercase = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __UpperCamelCase :Tuple = {} if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase :Dict = model.mobilenet_va else: __UpperCamelCase :str = model __UpperCamelCase :int = '''MobilenetV1/Conv2d_0/''' __UpperCamelCase :str = backbone.conv_stem.convolution.weight __UpperCamelCase :int = backbone.conv_stem.normalization.bias __UpperCamelCase :Union[str, Any] = backbone.conv_stem.normalization.weight __UpperCamelCase :Optional[int] = backbone.conv_stem.normalization.running_mean __UpperCamelCase :Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): __UpperCamelCase :Optional[Any] = i + 1 __UpperCamelCase :Optional[int] = i * 2 __UpperCamelCase :List[Any] = backbone.layer[pt_index] __UpperCamelCase :Tuple = f"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" __UpperCamelCase :Any = pointer.convolution.weight __UpperCamelCase :Dict = pointer.normalization.bias __UpperCamelCase :List[str] = pointer.normalization.weight __UpperCamelCase :Any = pointer.normalization.running_mean __UpperCamelCase :List[str] = pointer.normalization.running_var __UpperCamelCase :Union[str, Any] = backbone.layer[pt_index + 1] __UpperCamelCase :List[str] = f"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" __UpperCamelCase :Optional[Any] = pointer.convolution.weight __UpperCamelCase :Dict = pointer.normalization.bias __UpperCamelCase :int = pointer.normalization.weight __UpperCamelCase :Optional[int] = pointer.normalization.running_mean __UpperCamelCase :Optional[int] = pointer.normalization.running_var if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase :Any = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' __UpperCamelCase :Union[str, Any] = model.classifier.weight __UpperCamelCase :int = model.classifier.bias return tf_to_pt_map def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model __UpperCamelCase :Any = tf.train.list_variables(SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[str] = {} for name, shape in init_vars: logger.info(f"""Loading TF weight {name} with shape {shape}""" ) __UpperCamelCase :str = tf.train.load_variable(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[str] = array # Build TF to PyTorch weights loading map __UpperCamelCase :Optional[Any] = _build_tf_to_pytorch_map(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for name, pointer in tf_to_pt_map.items(): logger.info(f"""Importing {name}""" ) if name not in tf_weights: logger.info(f"""{name} not in tf pre-trained weights, skipping""" ) continue __UpperCamelCase :Optional[Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) __UpperCamelCase :Optional[int] = np.transpose(SCREAMING_SNAKE_CASE , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer __UpperCamelCase :Tuple = array.squeeze().transpose() else: __UpperCamelCase :Union[str, Any] = np.transpose(SCREAMING_SNAKE_CASE , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(f"""Initialize PyTorch weight {name} {array.shape}""" ) __UpperCamelCase :Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE ) tf_weights.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) tf_weights.pop(name + '''/RMSProp''' , SCREAMING_SNAKE_CASE ) tf_weights.pop(name + '''/RMSProp_1''' , SCREAMING_SNAKE_CASE ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , SCREAMING_SNAKE_CASE ) logger.info(f"""Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}""" ) return model def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase :str = features.shape[-2:] __UpperCamelCase , __UpperCamelCase :Union[str, Any] = conv_layer.stride __UpperCamelCase , __UpperCamelCase :Union[str, Any] = conv_layer.kernel_size if in_height % stride_height == 0: __UpperCamelCase :Optional[int] = max(kernel_height - stride_height , 0 ) else: __UpperCamelCase :List[Any] = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: __UpperCamelCase :List[str] = max(kernel_width - stride_width , 0 ) else: __UpperCamelCase :Tuple = max(kernel_width - (in_width % stride_width) , 0 ) __UpperCamelCase :Any = pad_along_width // 2 __UpperCamelCase :Tuple = pad_along_width - pad_left __UpperCamelCase :Union[str, Any] = pad_along_height // 2 __UpperCamelCase :str = pad_along_height - pad_top __UpperCamelCase :Optional[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''constant''' , 0.0 ) class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = 1 , __lowercase = 1 , __lowercase = False , __lowercase = True , __lowercase = True , ) -> None: super().__init__() __UpperCamelCase :str = config if in_channels % groups != 0: raise ValueError(f"""Input channels ({in_channels}) are not divisible by {groups} groups.""") if out_channels % groups != 0: raise ValueError(f"""Output channels ({out_channels}) are not divisible by {groups} groups.""") __UpperCamelCase :Any = 0 if config.tf_padding else int((kernel_size - 1) / 2) __UpperCamelCase :List[Any] = nn.Convad( in_channels=__lowercase , out_channels=__lowercase , kernel_size=__lowercase , stride=__lowercase , padding=__lowercase , groups=__lowercase , bias=__lowercase , padding_mode='''zeros''' , ) if use_normalization: __UpperCamelCase :str = nn.BatchNormad( num_features=__lowercase , eps=config.layer_norm_eps , momentum=0.99_97 , affine=__lowercase , track_running_stats=__lowercase , ) else: __UpperCamelCase :Tuple = None if use_activation: if isinstance(__lowercase , __lowercase): __UpperCamelCase :Union[str, Any] = ACTaFN[use_activation] elif isinstance(config.hidden_act , __lowercase): __UpperCamelCase :Dict = ACTaFN[config.hidden_act] else: __UpperCamelCase :List[Any] = config.hidden_act else: __UpperCamelCase :Optional[Any] = None def UpperCamelCase__ ( self , __lowercase) -> torch.Tensor: if self.config.tf_padding: __UpperCamelCase :Any = apply_tf_padding(__lowercase , self.convolution) __UpperCamelCase :str = self.convolution(__lowercase) if self.normalization is not None: __UpperCamelCase :Any = self.normalization(__lowercase) if self.activation is not None: __UpperCamelCase :List[str] = self.activation(__lowercase) return features class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : List[str] = MobileNetVaConfig a__ : Dict = load_tf_weights_in_mobilenet_va a__ : Tuple = """mobilenet_v1""" a__ : Optional[Any] = """pixel_values""" a__ : int = False def UpperCamelCase__ ( self , __lowercase) -> None: if isinstance(__lowercase , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(__lowercase , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) __lowercase = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __lowercase = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , UpperCAmelCase_ , ) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self , __lowercase , __lowercase = True) -> Optional[Any]: super().__init__(__lowercase) __UpperCamelCase :List[str] = config __UpperCamelCase :Any = 32 __UpperCamelCase :List[str] = max(int(depth * config.depth_multiplier) , config.min_depth) __UpperCamelCase :Union[str, Any] = MobileNetVaConvLayer( __lowercase , in_channels=config.num_channels , out_channels=__lowercase , kernel_size=3 , stride=2 , ) __UpperCamelCase :str = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] __UpperCamelCase :Any = nn.ModuleList() for i in range(13): __UpperCamelCase :str = out_channels if strides[i] == 2 or i == 0: depth *= 2 __UpperCamelCase :Tuple = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( __lowercase , in_channels=__lowercase , out_channels=__lowercase , kernel_size=3 , stride=strides[i] , groups=__lowercase , )) self.layer.append( MobileNetVaConvLayer( __lowercase , in_channels=__lowercase , out_channels=__lowercase , kernel_size=1 , )) __UpperCamelCase :str = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase__ ( self , __lowercase) -> Union[str, Any]: raise NotImplementedError @add_start_docstrings_to_model_forward(__lowercase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase__ ( self , __lowercase = None , __lowercase = None , __lowercase = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: __UpperCamelCase :Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase :str = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''') __UpperCamelCase :int = self.conv_stem(__lowercase) __UpperCamelCase :List[str] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): __UpperCamelCase :Optional[Any] = layer_module(__lowercase) if output_hidden_states: __UpperCamelCase :int = all_hidden_states + (hidden_states,) __UpperCamelCase :Any = hidden_states if self.pooler is not None: __UpperCamelCase :str = torch.flatten(self.pooler(__lowercase) , start_dim=1) else: __UpperCamelCase :Tuple = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowercase , pooler_output=__lowercase , hidden_states=__lowercase , ) @add_start_docstrings( """ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , UpperCAmelCase_ , ) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self , __lowercase) -> None: super().__init__(__lowercase) __UpperCamelCase :int = config.num_labels __UpperCamelCase :Optional[int] = MobileNetVaModel(__lowercase) __UpperCamelCase :Optional[Any] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head __UpperCamelCase :str = nn.Dropout(config.classifier_dropout_prob , inplace=__lowercase) __UpperCamelCase :Dict = nn.Linear(__lowercase , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowercase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase__ ( self , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: __UpperCamelCase :List[Any] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase :Tuple = self.mobilenet_va(__lowercase , output_hidden_states=__lowercase , return_dict=__lowercase) __UpperCamelCase :List[str] = outputs.pooler_output if return_dict else outputs[1] __UpperCamelCase :Union[str, Any] = self.classifier(self.dropout(__lowercase)) __UpperCamelCase :int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __UpperCamelCase :Tuple = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __UpperCamelCase :Union[str, Any] = '''single_label_classification''' else: __UpperCamelCase :Optional[Any] = '''multi_label_classification''' if self.config.problem_type == "regression": __UpperCamelCase :Any = MSELoss() if self.num_labels == 1: __UpperCamelCase :List[str] = loss_fct(logits.squeeze() , labels.squeeze()) else: __UpperCamelCase :Dict = loss_fct(__lowercase , __lowercase) elif self.config.problem_type == "single_label_classification": __UpperCamelCase :Optional[int] = CrossEntropyLoss() __UpperCamelCase :str = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": __UpperCamelCase :Dict = BCEWithLogitsLoss() __UpperCamelCase :List[str] = loss_fct(__lowercase , __lowercase) if not return_dict: __UpperCamelCase :Tuple = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__lowercase , logits=__lowercase , hidden_states=outputs.hidden_states , )
105
0
from __future__ import annotations __A : Optional[int] = [] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> bool: '''simple docstring''' for i in range(len(_UpperCAmelCase ) ): if board[row][i] == 1: return False for i in range(len(_UpperCAmelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(_UpperCAmelCase, -1, -1 ), range(_UpperCAmelCase, -1, -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(_UpperCAmelCase, -1, -1 ), range(_UpperCAmelCase, len(_UpperCAmelCase ) ) ): if board[i][j] == 1: return False return True def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> bool: '''simple docstring''' if row >= len(_UpperCAmelCase ): solution.append(_UpperCAmelCase ) printboard(_UpperCAmelCase ) print() return True for i in range(len(_UpperCAmelCase ) ): if is_safe(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): lowerCAmelCase : str = 1 solve(_UpperCAmelCase, row + 1 ) lowerCAmelCase : Optional[Any] = 0 return False def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> None: '''simple docstring''' for i in range(len(_UpperCAmelCase ) ): for j in range(len(_UpperCAmelCase ) ): if board[i][j] == 1: print('Q', end=' ' ) else: print('.', end=' ' ) print() # n=int(input("The no. of queens")) __A : int = 8 __A : Optional[int] = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
138
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' return " ".join( ''.join(word[::-1] ) if len(_UpperCAmelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
138
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
356
import os from math import logaa def lowerCamelCase__ ( A__ : str = "base_exp.txt" ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowerCamelCase, __lowerCamelCase = list(map(A__ , line.split(""",""" ) ) ) if x * logaa(A__ ) > largest: __lowerCamelCase = x * logaa(A__ ) __lowerCamelCase = i + 1 return result if __name__ == "__main__": print(solution())
29
0
"""simple docstring""" lowercase__ : List[str] = '''\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n''' lowercase__ : List[Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase__ : Any = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
264
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase = "The quick brown fox jumps over the lazy dog" , ) ->bool: """simple docstring""" a_ = set() # Replace all the whitespace in our sentence a_ = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(UpperCAmelCase ) == 26 def UpperCamelCase ( UpperCAmelCase = "The quick brown fox jumps over the lazy dog" , ) ->bool: """simple docstring""" a_ = [False] * 26 for char in input_str: if char.islower(): a_ = True elif char.isupper(): a_ = True return all(UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase = "The quick brown fox jumps over the lazy dog" , ) ->bool: """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def UpperCamelCase ( ) ->None: """simple docstring""" from timeit import timeit a_ = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=UpperCAmelCase ) ) print(timeit("is_pangram_faster()" , setup=UpperCAmelCase ) ) print(timeit("is_pangram_fastest()" , setup=UpperCAmelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
243
0
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging _snake_case : str = logging.get_logger(__name__) class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[Any] = CLIPConfig __UpperCAmelCase : Optional[Any] = ["CLIPEncoderLayer"] def __init__( self : Optional[Any] , lowerCamelCase : CLIPConfig ) -> int: super().__init__(lowerCamelCase ) __snake_case : str = CLIPVisionModelWithProjection(config.vision_config ) __snake_case : Optional[Any] = nn.Linear(config.vision_config.projection_dim , 1 ) __snake_case : List[str] = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def __snake_case ( self : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : int=0.5 , lowerCamelCase : List[str]=0.5 ) -> Dict: __snake_case : Tuple = self.vision_model(lowerCamelCase )[0] __snake_case : List[str] = self.p_head(lowerCamelCase ) __snake_case : str = nsfw_detected.flatten() __snake_case : Optional[Any] = nsfw_detected > p_threshold __snake_case : Optional[Any] = nsfw_detected.tolist() if any(lowerCamelCase ): logger.warning( "Potential NSFW content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, nsfw_detected_ in enumerate(lowerCamelCase ): if nsfw_detected_: __snake_case : Any = np.zeros(images[idx].shape ) __snake_case : Union[str, Any] = self.w_head(lowerCamelCase ) __snake_case : List[str] = watermark_detected.flatten() __snake_case : Optional[int] = watermark_detected > w_threshold __snake_case : List[str] = watermark_detected.tolist() if any(lowerCamelCase ): logger.warning( "Potential watermarked content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, watermark_detected_ in enumerate(lowerCamelCase ): if watermark_detected_: __snake_case : Union[str, Any] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
134
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case : Union[str, Any] = logging.get_logger(__name__) def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Dict = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) __snake_case : List[Any] = MaskFormerConfig(backbone_config=__lowerCamelCase ) __snake_case : List[Any] = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok __snake_case : Any = 8_4_7 __snake_case : List[Any] = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok __snake_case : Optional[int] = 1_5_0 __snake_case : int = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok __snake_case : Optional[Any] = 1_7_1 __snake_case : List[str] = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO __snake_case : Optional[int] = 1_3_3 __snake_case : int = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok __snake_case : Union[str, Any] = 1_9 __snake_case : Dict = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok __snake_case : Any = 6_5 __snake_case : Any = "mapillary-vistas-id2label.json" __snake_case : str = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="dataset" ) , "r" ) ) __snake_case : Tuple = {int(__lowerCamelCase ): v for k, v in idalabel.items()} return config def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Dict = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : Dict = dct.pop(__lowerCamelCase ) __snake_case : Any = val def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : List[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __snake_case : Optional[int] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __snake_case : Tuple = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __snake_case : Tuple = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __snake_case : Tuple = in_proj_weight[:dim, :] __snake_case : Tuple = in_proj_bias[: dim] __snake_case : Union[str, Any] = in_proj_weight[ dim : dim * 2, : ] __snake_case : Tuple = in_proj_bias[ dim : dim * 2 ] __snake_case : str = in_proj_weight[ -dim :, : ] __snake_case : Any = in_proj_bias[-dim :] # fmt: on def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): # fmt: off __snake_case : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __snake_case : List[str] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __snake_case : Union[str, Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __snake_case : Any = in_proj_weight[: hidden_size, :] __snake_case : Optional[int] = in_proj_bias[:config.hidden_size] __snake_case : Any = in_proj_weight[hidden_size : hidden_size * 2, :] __snake_case : Any = in_proj_bias[hidden_size : hidden_size * 2] __snake_case : Tuple = in_proj_weight[-hidden_size :, :] __snake_case : Optional[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __snake_case : Optional[Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __snake_case : Union[str, Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __snake_case : int = in_proj_weight[: hidden_size, :] __snake_case : Tuple = in_proj_bias[:config.hidden_size] __snake_case : str = in_proj_weight[hidden_size : hidden_size * 2, :] __snake_case : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] __snake_case : Optional[Any] = in_proj_weight[-hidden_size :, :] __snake_case : Tuple = in_proj_bias[-hidden_size :] # fmt: on def lowerCAmelCase_ ( ): __snake_case : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : List[str] = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = False ): __snake_case : Optional[int] = get_maskformer_config(__lowerCamelCase ) # load original state_dict with open(__lowerCamelCase , "rb" ) as f: __snake_case : int = pickle.load(__lowerCamelCase ) __snake_case : Optional[int] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __snake_case : Tuple = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) read_in_swin_q_k_v(__lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(__lowerCamelCase , __lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): __snake_case : int = torch.from_numpy(__lowerCamelCase ) # load 🤗 model __snake_case : List[str] = MaskFormerForInstanceSegmentation(__lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(__lowerCamelCase , param.shape ) __snake_case , __snake_case : List[str] = model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__lowerCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __snake_case : Union[str, Any] = prepare_img() if "vistas" in model_name: __snake_case : Optional[int] = 6_5 elif "cityscapes" in model_name: __snake_case : Optional[int] = 6_5_5_3_5 else: __snake_case : Union[str, Any] = 2_5_5 __snake_case : Union[str, Any] = True if "ade" in model_name else False __snake_case : str = MaskFormerImageProcessor(ignore_index=__lowerCamelCase , reduce_labels=__lowerCamelCase ) __snake_case : List[str] = image_processor(__lowerCamelCase , return_tensors="pt" ) __snake_case : Tuple = model(**__lowerCamelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __snake_case : Optional[Any] = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _snake_case : List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
134
1
"""simple docstring""" __A : List[Any] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' __A : Dict = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __A : int = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
33
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __a: List[str] = logging.get_logger(__name__) class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ["pixel_values"] def __init__( self , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = True , __lowerCAmelCase = 1 / 255 , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , **__lowerCAmelCase , ) -> None: super().__init__(**__lowerCAmelCase ) lowercase__ : Optional[int] = size if size is not None else {'''height''': 384, '''width''': 384} lowercase__ : Optional[Any] = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) lowercase__ : Dict = do_resize lowercase__ : int = size lowercase__ : int = resample lowercase__ : Tuple = do_rescale lowercase__ : int = rescale_factor lowercase__ : int = do_normalize lowercase__ : Optional[int] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase__ : Optional[int] = image_std if image_std is not None else OPENAI_CLIP_STD lowercase__ : Tuple = do_convert_rgb def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> np.ndarray: lowercase__ : Union[str, Any] = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) lowercase__ : Any = (size['''height'''], size['''width''']) return resize(__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> str: return rescale(__lowerCAmelCase , scale=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> np.ndarray: return normalize(__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = ChannelDimension.FIRST , **__lowerCAmelCase , ) -> PIL.Image.Image: lowercase__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize lowercase__ : Any = resample if resample is not None else self.resample lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : List[Any] = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Dict = image_mean if image_mean is not None else self.image_mean lowercase__ : Dict = image_std if image_std is not None else self.image_std lowercase__ : Dict = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase__ : Optional[int] = size if size is not None else self.size lowercase__ : int = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) lowercase__ : str = make_list_of_images(__lowerCAmelCase ) if not valid_images(__lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase__ : Optional[Any] = [convert_to_rgb(__lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. lowercase__ : Any = [to_numpy_array(__lowerCAmelCase ) for image in images] if do_resize: lowercase__ : Tuple = [self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase ) for image in images] if do_rescale: lowercase__ : List[str] = [self.rescale(image=__lowerCAmelCase , scale=__lowerCAmelCase ) for image in images] if do_normalize: lowercase__ : Tuple = [self.normalize(image=__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase ) for image in images] lowercase__ : List[str] = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase ) for image in images] lowercase__ : Optional[Any] = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowerCAmelCase ) return encoded_outputs
198
0
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) class lowerCAmelCase__ ( __lowercase ): a__ : Optional[Any] = ["""pixel_values"""] def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 2_55 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : int = 8 , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_pad __lowerCamelCase = pad_size def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> np.ndarray: return rescale(SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ) -> str: __lowerCamelCase , __lowerCamelCase = get_image_size(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = (old_height // size + 1) * size - old_height __lowerCamelCase = (old_width // size + 1) * size - old_width return pad(SCREAMING_SNAKE_CASE__ , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : ImageInput , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[float] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ : str , ) -> str: __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_pad if do_pad is not None else self.do_pad __lowerCamelCase = pad_size if pad_size is not None else self.pad_size __lowerCamelCase = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ ) for image in images] if do_pad: __lowerCamelCase = [self.pad(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ ) for image in images] __lowerCamelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] __lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
360
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ : Any = TypeVar("KEY") SCREAMING_SNAKE_CASE__ : Dict = TypeVar("VAL") @dataclass(frozen=__lowercase , slots=__lowercase ) class lowerCAmelCase__ ( Generic[KEY, VAL] ): a__ : KEY a__ : VAL class lowerCAmelCase__ ( _Item ): def __init__( self : str ) -> None: super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __bool__( self : Tuple ) -> bool: return False SCREAMING_SNAKE_CASE__ : List[Any] = _DeletedItem() class lowerCAmelCase__ ( MutableMapping[KEY, VAL] ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ) -> None: __lowerCamelCase = initial_block_size __lowerCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowerCamelCase = capacity_factor __lowerCamelCase = 0 def __A ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ) -> int: return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int: return (ind + 1) % len(self._buckets ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> bool: __lowerCamelCase = self._buckets[ind] if not stored: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self._len += 1 return True elif stored.key == key: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return True else: return False def __A ( self : Any ) -> bool: __lowerCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE__ ) def __A ( self : List[Any] ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False __lowerCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __A ( self : int , SCREAMING_SNAKE_CASE__ : int ) -> None: __lowerCamelCase = self._buckets __lowerCamelCase = [None] * new_size __lowerCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __A ( self : str ) -> None: self._resize(len(self._buckets ) * 2 ) def __A ( self : Dict ) -> None: self._resize(len(self._buckets ) // 2 ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY ) -> Iterator[int]: __lowerCamelCase = self._get_bucket_index(SCREAMING_SNAKE_CASE__ ) for _ in range(len(self._buckets ) ): yield ind __lowerCamelCase = self._get_next_ind(SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): break def __setitem__( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __delitem__( self : List[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE__ ) if item is _deleted: continue if item.key == key: __lowerCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> VAL: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE__ ) def __len__( self : int ) -> int: return self._len def __iter__( self : Tuple ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ) -> str: __lowerCamelCase = ''' ,'''.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
339
0
'''simple docstring''' from math import factorial def snake_case_ ( SCREAMING_SNAKE_CASE__ = 100 ): """simple docstring""" return sum(map(_lowercase , str(factorial(_lowercase ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
200
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class __UpperCamelCase : def __init__( self , lowerCAmelCase__ ) -> Optional[int]: a : List[str] = str(id_ ) a : Optional[Any] = None a : Tuple = None a : str = [] a : Any = {} # {vertex:distance} def __lt__( self , lowerCAmelCase__ ) -> Any: return self.key < other.key def __repr__( self ) -> Optional[Any]: return self.id def __a ( self , lowerCAmelCase__ ) -> Any: self.neighbors.append(lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: a : Optional[Any] = weight def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : int , _lowercase : int , _lowercase : Union[str, Any] ) ->str: '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _lowercase ) graph[b - 1].add_edge(graph[a - 1] , _lowercase ) def _SCREAMING_SNAKE_CASE ( _lowercase : list , _lowercase : Vertex ) ->list: '''simple docstring''' a : int = [] for u in graph: a : List[str] = math.inf a : int = None a : str = 0 a : Union[str, Any] = graph[:] while q: a : List[Any] = min(_lowercase ) q.remove(_lowercase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): a : List[Any] = u a : Optional[int] = u.edges[v.id] for i in range(1 , len(_lowercase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _SCREAMING_SNAKE_CASE ( _lowercase : list , _lowercase : Vertex ) ->Iterator[tuple]: '''simple docstring''' for u in graph: a : str = math.inf a : Dict = None a : Dict = 0 a : List[Any] = list(_lowercase ) hq.heapify(_lowercase ) while h: a : Dict = hq.heappop(_lowercase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): a : Dict = u a : Optional[Any] = u.edges[v.id] hq.heapify(_lowercase ) for i in range(1 , len(_lowercase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _SCREAMING_SNAKE_CASE ( ) ->None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
105
0
'''simple docstring''' import math def lowerCamelCase__ ( _A ): a : Union[str, Any] = [True] * n a : int = False a : List[str] = False a : List[Any] = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): a : Any = i * 2 while index < n: a : Any = False a : Optional[Any] = index + i a : str = [2] for i in range(3 , _A , 2 ): if is_prime[i]: primes.append(_A ) return primes def lowerCamelCase__ ( _A = 9999_6666_3333 ): a : Optional[int] = math.floor(math.sqrt(_A ) ) + 100 a : Dict = prime_sieve(_A ) a : List[Any] = 0 a : Tuple = 0 a : int = primes[prime_index] while (last_prime**2) <= limit: a : Tuple = primes[prime_index + 1] a : Union[str, Any] = last_prime**2 a : Optional[int] = next_prime**2 # Get numbers divisible by lps(current) a : List[str] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) a : Optional[Any] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps a : str = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair a : List[str] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
365
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class a__: def __init__( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[int]=2 , __snake_case : Union[str, Any]=8 , __snake_case : List[str]=True , __snake_case : Dict=True , __snake_case : Optional[Any]=True , __snake_case : List[str]=True , __snake_case : Tuple=99 , __snake_case : int=16 , __snake_case : Optional[int]=5 , __snake_case : int=2 , __snake_case : Tuple=36 , __snake_case : Optional[Any]="gelu" , __snake_case : str=0.0 , __snake_case : Optional[int]=0.0 , __snake_case : Tuple=5_12 , __snake_case : str=16 , __snake_case : str=2 , __snake_case : int=0.02 , __snake_case : Optional[int]=3 , __snake_case : List[Any]=4 , __snake_case : Any=None , ): a : int = parent a : Any = batch_size a : Optional[int] = seq_length a : List[str] = is_training a : Dict = use_input_mask a : Union[str, Any] = use_token_type_ids a : Tuple = use_labels a : Dict = vocab_size a : Optional[int] = hidden_size a : List[Any] = num_hidden_layers a : Optional[Any] = num_attention_heads a : str = intermediate_size a : Dict = hidden_act a : str = hidden_dropout_prob a : Tuple = attention_probs_dropout_prob a : Optional[Any] = max_position_embeddings a : Tuple = type_vocab_size a : int = type_sequence_label_size a : List[Any] = initializer_range a : List[str] = num_labels a : List[str] = num_choices a : Optional[Any] = scope def lowercase_ ( self : Union[str, Any] ): a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a : Optional[Any] = None if self.use_input_mask: a : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) a : Tuple = None if self.use_token_type_ids: a : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a : str = None a : int = None a : Any = None if self.use_labels: a : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a : List[str] = ids_tensor([self.batch_size] , self.num_choices ) a : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : Union[str, Any] ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def lowercase_ ( self : List[str] ): a : List[Any] = self.get_config() a : Optional[Any] = 3_00 return config def lowercase_ ( self : Union[str, Any] ): ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Optional[Any] = self.prepare_config_and_inputs() a : Union[str, Any] = True a : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) a : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase_ ( self : int , __snake_case : int , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Any ): a : Dict = MraModel(config=__snake_case ) model.to(__snake_case ) model.eval() a : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) a : List[str] = model(__snake_case , token_type_ids=__snake_case ) a : Union[str, Any] = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : List[str] , __snake_case : Tuple , __snake_case : List[str] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : List[Any] , ): a : Optional[Any] = True a : Optional[int] = MraModel(__snake_case ) model.to(__snake_case ) model.eval() a : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , ) a : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , ) a : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Optional[Any] , __snake_case : int , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Dict , __snake_case : Optional[Any] ): a : Union[str, Any] = MraForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() a : List[str] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : Tuple , __snake_case : Union[str, Any] , __snake_case : str , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : int ): a : Optional[int] = MraForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() a : Optional[int] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self : Dict , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : str ): a : Tuple = self.num_labels a : Dict = MraForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a : Any = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : str , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : int , __snake_case : List[Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : int ): a : Tuple = self.num_labels a : Tuple = MraForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() a : List[Any] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self : Any , __snake_case : Any , __snake_case : str , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Any , __snake_case : Any , __snake_case : str ): a : Optional[int] = self.num_choices a : int = MraForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() a : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a : int = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self : Optional[Any] ): a : Union[str, Any] = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Union[str, Any] = config_and_inputs a : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a__( lowerCamelCase__ , unittest.TestCase ): lowercase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = () def lowercase_ ( self : Any ): a : Tuple = MraModelTester(self ) a : str = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def lowercase_ ( self : List[str] ): self.config_tester.run_common_tests() def lowercase_ ( self : List[str] ): a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowercase_ ( self : Any ): a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a : Dict = type self.model_tester.create_and_check_model(*__snake_case ) def lowercase_ ( self : List[Any] ): a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def lowercase_ ( self : Optional[Any] ): a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__snake_case ) def lowercase_ ( self : List[Any] ): a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def lowercase_ ( self : Tuple ): a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def lowercase_ ( self : Optional[Any] ): a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) @slow def lowercase_ ( self : int ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Dict = MraModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='MRA does not output attentions' ) def lowercase_ ( self : Union[str, Any] ): return @require_torch class a__( unittest.TestCase ): @slow def lowercase_ ( self : Union[str, Any] ): a : Union[str, Any] = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) a : List[str] = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): a : Optional[int] = model(__snake_case )[0] a : Any = torch.Size((1, 2_56, 7_68) ) self.assertEqual(output.shape , __snake_case ) a : str = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1e-4 ) ) @slow def lowercase_ ( self : Optional[int] ): a : Dict = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) a : Optional[int] = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): a : Dict = model(__snake_case )[0] a : Union[str, Any] = 5_02_65 a : Dict = torch.Size((1, 2_56, vocab_size) ) self.assertEqual(output.shape , __snake_case ) a : Dict = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1e-4 ) ) @slow def lowercase_ ( self : Any ): a : Dict = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) a : Optional[int] = torch.arange(40_96 ).unsqueeze(0 ) with torch.no_grad(): a : Tuple = model(__snake_case )[0] a : List[Any] = 5_02_65 a : str = torch.Size((1, 40_96, vocab_size) ) self.assertEqual(output.shape , __snake_case ) a : int = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1e-4 ) )
96
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _lowercase = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''BeitFeatureExtractor'''] _lowercase = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
74
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
0
'''simple docstring''' from __future__ import annotations def _lowerCamelCase ( lowerCamelCase_ : list[int] , lowerCamelCase_ : int ): """simple docstring""" UpperCAmelCase_ : int = 0 UpperCAmelCase_ : str = len(lowerCamelCase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: UpperCAmelCase_ : Tuple = i + 1 else: UpperCAmelCase_ : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 11, 15], 9) = }''')
354
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' @register_to_config def __init__( self , snake_case_ = 7_6_8 , ): '''simple docstring''' super().__init__() UpperCAmelCase_ : int = nn.Parameter(torch.zeros(1 , snake_case_ ) ) UpperCAmelCase_ : str = nn.Parameter(torch.ones(1 , snake_case_ ) ) def _UpperCamelCase ( self , snake_case_ = None , snake_case_ = None , ): '''simple docstring''' UpperCAmelCase_ : int = nn.Parameter(self.mean.to(snake_case_ ).to(snake_case_ ) ) UpperCAmelCase_ : Tuple = nn.Parameter(self.std.to(snake_case_ ).to(snake_case_ ) ) return self def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Dict = (embeds - self.mean) * 1.0 / self.std return embeds def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : List[Any] = (embeds * self.std) + self.mean return embeds
274
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : List[Any] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Union[str, Any] ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : Union[str, Any] , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Tuple ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : List[Any] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Tuple ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : Optional[int] , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Optional[int] ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : int , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Tuple ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : List[str] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Union[str, Any] ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : str , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Optional[Any] ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : Dict , *lowerCAmelCase_ : str , **lowerCAmelCase_ : str ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : int , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : Optional[int] , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Tuple ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : Optional[Any] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : str ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : Any , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : List[str] ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : Optional[Any] , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : Any , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : str ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : List[str] , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[int] ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : Union[str, Any] , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Dict ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : List[str] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : Optional[Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Optional[int] ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : Any , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : int ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : str , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Tuple ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : Optional[int] , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Union[str, Any] ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : Dict , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : Dict , *lowerCAmelCase_ : str , **lowerCAmelCase_ : List[str] ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : Dict , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : int ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : List[str] , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Tuple ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : Optional[int] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Optional[Any] ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : List[str] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : Tuple , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Optional[int] ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : str , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Optional[int] ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : Optional[int] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Tuple ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['sentencepiece'] def __init__( self : Optional[Any] , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : int ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] )
134
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = StableDiffusionInpaintPipeline __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __snake_case = frozenset([] ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) A__ : Optional[Any] =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCAmelCase_ , ) A__ : Dict =PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) torch.manual_seed(0 ) A__ : int =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) A__ : str =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) A__ : Optional[int] =CLIPTextModel(lowerCAmelCase_ ) A__ : Dict =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A__ : str ={ """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any]=0 ) -> List[str]: '''simple docstring''' # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched A__ : List[str] =floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) A__ : List[str] =image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ : List[str] =Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) A__ : int =Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(lowerCAmelCase_ ).startswith("""mps""" ): A__ : str =torch.manual_seed(lowerCAmelCase_ ) else: A__ : Tuple =torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) A__ : Optional[Any] ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : str ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : Tuple =self.get_dummy_components() A__ : str =StableDiffusionInpaintPipeline(**lowerCAmelCase_ ) A__ : Any =sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Optional[Any] =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : Dict =sd_pipe(**lowerCAmelCase_ ).images A__ : Union[str, Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ : Optional[Any] =np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : Union[str, Any] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) A__ : Optional[Any] ="""stabilityai/stable-diffusion-2-inpainting""" A__ : int =StableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Dict ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : str =torch.manual_seed(0 ) A__ : Dict =pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type="""np""" , ) A__ : Tuple =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9e-3 def lowercase__ ( self : str ) -> int: '''simple docstring''' A__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : List[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : List[Any] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) A__ : int ="""stabilityai/stable-diffusion-2-inpainting""" A__ : List[Any] =StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCAmelCase_ , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Union[str, Any] ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : Union[str, Any] =torch.manual_seed(0 ) A__ : Dict =pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type="""np""" , ) A__ : str =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ : Union[str, Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : Optional[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : List[str] ="""stabilityai/stable-diffusion-2-inpainting""" A__ : Any =PNDMScheduler.from_pretrained(lowerCAmelCase_ , subfolder="""scheduler""" ) A__ : Optional[int] =StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A__ : Dict ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : Any =torch.manual_seed(0 ) A__ : Tuple =pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=2 , output_type="""np""" , ) A__ : Dict =torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
134
1
import os def lowerCamelCase__ ( a ) -> List[str]: _A: Dict = len(grid[0] ) _A: Union[str, Any] = len(a ) _A: int = 0 _A: int = 0 _A: Dict = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(a ): for j in range(n_rows - 3 ): _A: Dict = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] _A: str = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: _A: Tuple = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: _A: Optional[int] = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) _A: Optional[Any] = max( a , a , a , a ) if max_product > largest: _A: str = max_product return largest def lowerCamelCase__ ( ) -> Optional[Any]: _A: Optional[Any] = [] with open(os.path.dirname(a ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) _A: Any = [[int(a ) for i in grid[j]] for j in range(len(a ) )] return largest_product(a ) if __name__ == "__main__": print(solution())
301
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase__ ( a , a = True , a = math.inf , a = -math.inf , a = math.inf , a = -math.inf , a = False , a = 1_00 , a = 0.01 , a = 1 , ) -> Any: _A: Optional[Any] = False _A: Dict = search_prob _A: str = start_temperate _A: Optional[int] = [] _A: int = 0 _A: Dict = None while not search_end: _A: Dict = current_state.score() if best_state is None or current_score > best_state.score(): _A: List[Any] = current_state scores.append(a ) iterations += 1 _A: List[str] = None _A: str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _A: Any = random.randint(0 , len(a ) - 1 ) # picking a random neighbor _A: Union[str, Any] = neighbors.pop(a ) _A: List[str] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _A: Optional[Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _A: str = picked_neighbor else: _A: Tuple = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _A: Optional[int] = picked_neighbor _A: Dict = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _A: Any = True else: _A: List[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a ) , a ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[int] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : Optional[Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (3 * x**2) - (6 * y) UpperCAmelCase__ : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" ) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" )
301
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=_a ) class SCREAMING_SNAKE_CASE__ ( _a ): _a = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) _a = Features({'audio': Audio()} ) _a = Features({'labels': ClassLabel} ) _a = 'audio' _a = 'labels' def __lowercase ( self : Optional[Any] , lowerCAmelCase : List[Any] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowerCAmelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) lowerCAmelCase = copy.deepcopy(self ) lowerCAmelCase = self.label_schema.copy() lowerCAmelCase = features[self.label_column] lowerCAmelCase = label_schema return task_template @property def __lowercase ( self : int ): return { self.audio_column: "audio", self.label_column: "labels", }
155
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class __lowerCAmelCase ( A ): UpperCamelCase = '''open-llama''' def __init__( self : str , A : List[Any]=10_00_00 , A : Tuple=40_96 , A : Tuple=1_10_08 , A : List[str]=32 , A : Tuple=32 , A : Optional[Any]="silu" , A : int=20_48 , A : Optional[Any]=0.0_2 , A : Dict=1E-6 , A : Optional[Any]=True , A : List[Any]=0 , A : Dict=1 , A : int=2 , A : Dict=False , A : Optional[int]=True , A : List[Any]=0.1 , A : str=0.1 , A : Dict=True , A : Optional[Any]=True , A : Dict=None , **A : Union[str, Any] , ) -> Dict: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = intermediate_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = rms_norm_eps _UpperCAmelCase = use_cache _UpperCAmelCase = kwargs.pop( 'use_memorry_efficient_attention' , A) _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_dropout_prob _UpperCAmelCase = use_stable_embedding _UpperCAmelCase = shared_input_output_embedding _UpperCAmelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , tie_word_embeddings=A , **A , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , A) or len(self.rope_scaling) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F"got {self.rope_scaling}") _UpperCAmelCase = self.rope_scaling.get('type' , A) _UpperCAmelCase = self.rope_scaling.get('factor' , A) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}") if rope_scaling_factor is None or not isinstance(A , A) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
339
0
def __lowerCamelCase ( __a :int ) -> None: """simple docstring""" A__ = generate_pascal_triangle(__a ) for row_idx in range(__a ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def __lowerCamelCase ( __a :int ) -> list[list[int]]: """simple docstring""" if not isinstance(__a , __a ): raise TypeError("""The input value of \'num_rows\' should be \'int\'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of \'num_rows\' should be greater than or equal to 0""" ) A__ = [] for current_row_idx in range(__a ): A__ = populate_current_row(__a , __a ) triangle.append(__a ) return triangle def __lowerCamelCase ( __a :list[list[int]] , __a :int ) -> list[int]: """simple docstring""" A__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 A__ = 1, 1 for current_col_idx in range(1 , __a ): calculate_current_element( __a , __a , __a , __a ) return current_row def __lowerCamelCase ( __a :list[list[int]] , __a :list[int] , __a :int , __a :int , ) -> None: """simple docstring""" A__ = triangle[current_row_idx - 1][current_col_idx - 1] A__ = triangle[current_row_idx - 1][current_col_idx] A__ = above_to_left_elt + above_to_right_elt def __lowerCamelCase ( __a :int ) -> list[list[int]]: """simple docstring""" if not isinstance(__a , __a ): raise TypeError("""The input value of \'num_rows\' should be \'int\'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of \'num_rows\' should be greater than or equal to 0""" ) A__ = [[1]] for row_index in range(1 , __a ): A__ = [0] + result[-1] + [0] A__ = row_index + 1 # Calculate the number of distinct elements in a row A__ = sum(divmod(__a , 2 ) ) A__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] A__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() A__ = row_first_half + row_second_half result.append(__a ) return result def __lowerCamelCase ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(__a :Callable , __a :int ) -> None: A__ = F'{func.__name__}({value})' A__ = timeit(F'__main__.{call}' , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__a , __a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
361
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging A : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCAmelCase : WhisperForConditionalGeneration , __lowerCAmelCase : WhisperProcessor , __lowerCAmelCase : AutoencoderKL , __lowerCAmelCase : CLIPTextModel , __lowerCAmelCase : CLIPTokenizer , __lowerCAmelCase : UNetaDConditionModel , __lowerCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __lowerCAmelCase : StableDiffusionSafetyChecker , __lowerCAmelCase : CLIPImageProcessor , ) -> List[str]: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=__lowerCAmelCase , speech_processor=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , ) def a_ ( self : Tuple , __lowerCAmelCase : Optional[Union[str, int]] = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": A__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowerCAmelCase ) def a_ ( self : Any ) -> str: """simple docstring""" self.enable_attention_slicing(__lowerCAmelCase ) @torch.no_grad() def __call__( self : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : int=1_60_00 , __lowerCAmelCase : int = 5_12 , __lowerCAmelCase : int = 5_12 , __lowerCAmelCase : int = 50 , __lowerCAmelCase : float = 7.5 , __lowerCAmelCase : Optional[Union[str, List[str]]] = None , __lowerCAmelCase : Optional[int] = 1 , __lowerCAmelCase : float = 0.0 , __lowerCAmelCase : Optional[torch.Generator] = None , __lowerCAmelCase : Optional[torch.FloatTensor] = None , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCAmelCase : int = 1 , **__lowerCAmelCase : Optional[Any] , ) -> Any: """simple docstring""" A__ = self.speech_processor.feature_extractor( __lowerCAmelCase , return_tensors="""pt""" , sampling_rate=__lowerCAmelCase ).input_features.to(self.device ) A__ = self.speech_model.generate(__lowerCAmelCase , max_length=48_00_00 ) A__ = self.speech_processor.tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , normalize=__lowerCAmelCase )[ 0 ] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): A__ = 1 elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): A__ = len(__lowerCAmelCase ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(__lowerCAmelCase )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(__lowerCAmelCase )}.' ) # get prompt text embeddings A__ = self.tokenizer( __lowerCAmelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) A__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) A__ = text_input_ids[:, : self.tokenizer.model_max_length] A__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A__ , A__ , A__ = text_embeddings.shape A__ = text_embeddings.repeat(1 , __lowerCAmelCase , 1 ) A__ = text_embeddings.view(bs_embed * num_images_per_prompt , __lowerCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A__ = 42 if negative_prompt is None: A__ = [""""""] * batch_size elif type(__lowerCAmelCase ) is not type(__lowerCAmelCase ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(__lowerCAmelCase )} !=' f' {type(__lowerCAmelCase )}.' ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): A__ = [negative_prompt] elif batch_size != len(__lowerCAmelCase ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(__lowerCAmelCase )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' """ the batch size of `prompt`.""" ) else: A__ = negative_prompt A__ = text_input_ids.shape[-1] A__ = self.tokenizer( __lowerCAmelCase , padding="""max_length""" , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors="""pt""" , ) A__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A__ = uncond_embeddings.shape[1] A__ = uncond_embeddings.repeat(1 , __lowerCAmelCase , 1 ) A__ = uncond_embeddings.view(batch_size * num_images_per_prompt , __lowerCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A__ = torch.randn(__lowerCAmelCase , generator=__lowerCAmelCase , device="""cpu""" , dtype=__lowerCAmelCase ).to( self.device ) else: A__ = torch.randn(__lowerCAmelCase , generator=__lowerCAmelCase , device=self.device , dtype=__lowerCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) A__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A__ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A__ = {} if accepts_eta: A__ = eta for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance A__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A__ = self.scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) # predict the noise residual A__ = self.unet(__lowerCAmelCase , __lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase ).sample # perform guidance if do_classifier_free_guidance: A__ , A__ = noise_pred.chunk(2 ) A__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A__ = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) A__ = 1 / 0.1_8_2_1_5 * latents A__ = self.vae.decode(__lowerCAmelCase ).sample A__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A__ = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__lowerCAmelCase , nsfw_content_detected=__lowerCAmelCase )
276
0
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a : def __init__( self : Dict ): snake_case_ = '' snake_case_ = '' snake_case_ = [] snake_case_ = 0 snake_case_ = 256 snake_case_ = 0 snake_case_ = 0 snake_case_ = 0 snake_case_ = 0 def A_ ( self : List[Any] , lowercase_ : Tuple ): snake_case_ = cva.imread(lowercase_ , 0 ) snake_case_ = copy.deepcopy(self.img ) snake_case_ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='''x''' ) snake_case_ = np.sum(lowercase_ ) for i in range(len(lowercase_ ) ): snake_case_ = x[i] / self.k self.sk += prk snake_case_ = (self.L - 1) * self.sk if self.rem != 0: snake_case_ = int(last % last ) snake_case_ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowercase_ ) snake_case_ = int(np.ma.count(self.img ) / self.img[1].size ) snake_case_ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): snake_case_ = self.img[j][i] if num != self.last_list[num]: snake_case_ = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def A_ ( self : Union[str, Any] ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def A_ ( self : Optional[Any] ): cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": a : Any = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') a : List[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
56
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = DDIMPipeline lowerCamelCase__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowerCamelCase__ = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """latents""", """callback""", """callback_steps""", } lowerCamelCase__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS lowerCamelCase__ = False def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) _lowerCamelCase : List[str] = DDIMScheduler() _lowerCamelCase : Optional[int] = {'unet': unet, 'scheduler': scheduler} return components def A_ ( self , lowercase , lowercase=0 ): if str(lowercase ).startswith('mps' ): _lowerCamelCase : Dict = torch.manual_seed(lowercase ) else: _lowerCamelCase : List[str] = torch.Generator(device=lowercase ).manual_seed(lowercase ) _lowerCamelCase : Tuple = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def A_ ( self ): _lowerCamelCase : Any = 'cpu' _lowerCamelCase : Tuple = self.get_dummy_components() _lowerCamelCase : Optional[Any] = self.pipeline_class(**lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : str = self.get_dummy_inputs(lowercase ) _lowerCamelCase : int = pipe(**lowercase ).images _lowerCamelCase : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) _lowerCamelCase : Tuple = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) _lowerCamelCase : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase , 1E-3 ) def A_ ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def A_ ( self ): super().test_save_load_local(expected_max_difference=3E-3 ) def A_ ( self ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def A_ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Optional[Any] = 'google/ddpm-cifar10-32' _lowerCamelCase : Optional[Any] = UNetaDModel.from_pretrained(lowercase ) _lowerCamelCase : Dict = DDIMScheduler() _lowerCamelCase : Dict = DDIMPipeline(unet=lowercase , scheduler=lowercase ) ddim.to(lowercase ) ddim.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : List[str] = torch.manual_seed(0 ) _lowerCamelCase : str = ddim(generator=lowercase , eta=0.0 , output_type='numpy' ).images _lowerCamelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCamelCase : List[Any] = np.array([0.17_23, 0.16_17, 0.16_00, 0.16_26, 0.14_97, 0.15_13, 0.15_05, 0.14_42, 0.14_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A_ ( self ): _lowerCamelCase : Optional[int] = 'google/ddpm-ema-bedroom-256' _lowerCamelCase : str = UNetaDModel.from_pretrained(lowercase ) _lowerCamelCase : str = DDIMScheduler.from_pretrained(lowercase ) _lowerCamelCase : Optional[int] = DDIMPipeline(unet=lowercase , scheduler=lowercase ) ddpm.to(lowercase ) ddpm.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = torch.manual_seed(0 ) _lowerCamelCase : int = ddpm(generator=lowercase , output_type='numpy' ).images _lowerCamelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowerCamelCase : str = np.array([0.00_60, 0.02_01, 0.03_44, 0.00_24, 0.00_18, 0.00_02, 0.00_22, 0.00_00, 0.00_69] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
96
0
"""simple docstring""" from string import ascii_uppercase __magic_name__ = {str(ord(c) - 55): c for c in ascii_uppercase} def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("""int() can't convert non-string with explicit base""" ) if num < 0: raise ValueError("""parameter must be positive int""" ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if base in (0, 1): raise ValueError("""base must be >= 2""" ) if base > 36: raise ValueError("""base must be <= 36""" ) __SCREAMING_SNAKE_CASE = """""" __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while div != 1: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = divmod(UpperCamelCase_ , UpperCamelCase_ ) if base >= 11 and 9 < mod < 36: __SCREAMING_SNAKE_CASE = ALPHABET_VALUES[str(UpperCamelCase_ )] else: __SCREAMING_SNAKE_CASE = str(UpperCamelCase_ ) new_value += actual_value __SCREAMING_SNAKE_CASE = num // base __SCREAMING_SNAKE_CASE = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(UpperCamelCase_ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
368
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ = False ): if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis __SCREAMING_SNAKE_CASE = [ 2047, 137_3653, 2532_6001, 32_1503_1751, 2_1523_0289_8747, 3_4747_4966_0383, 341_5500_7172_8321, 1, 382_5123_0565_4641_3051, 1, 1, 3186_6585_7834_0311_5116_7461, 3_3170_4406_4679_8873_8596_1981, ] __SCREAMING_SNAKE_CASE = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(UpperCamelCase_ , 1 ): if n < _p: # then we have our last prime to check __SCREAMING_SNAKE_CASE = primes[:idx] break __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: __SCREAMING_SNAKE_CASE = False for r in range(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = pow(UpperCamelCase_ , d * 2**r , UpperCamelCase_ ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): __SCREAMING_SNAKE_CASE = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _lowerCAmelCase ( ): assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(83_8201 ) assert miller_rabin(83_8207 ) # 1_373_653 assert not miller_rabin(1731_6001 ) assert miller_rabin(1731_6017 ) # 25_326_001 assert not miller_rabin(30_7838_6641 ) assert miller_rabin(30_7838_6653 ) # 3_215_031_751 assert not miller_rabin(1_7130_4557_4801 ) assert miller_rabin(1_7130_4557_4819 ) # 2_152_302_898_747 assert not miller_rabin(2_7797_9972_8307 ) assert miller_rabin(2_7797_9972_8327 ) # 3_474_749_660_383 assert not miller_rabin(113_8500_2390_9441 ) assert miller_rabin(113_8500_2390_9527 ) # 341_550_071_728_321 assert not miller_rabin(127_5041_0188_4880_4351 ) assert miller_rabin(127_5041_0188_4880_4391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(796_6646_4458_5077_8779_1867 ) assert miller_rabin(796_6646_4458_5077_8779_1951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5528_4067_7446_6478_9766_0333 ) assert miller_rabin(5528_4067_7446_6478_9766_0359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
255
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class A (unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ViTImageProcessor if is_vision_available() else None @property def a_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a_ ( self : Any ) -> List[str]: """simple docstring""" A__ = (3, 32, 1_28) A__ = tempfile.mkdtemp() # fmt: off A__ = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on A__ = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + """\n""" ) A__ = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 1_28}, } A__ = os.path.join(self.tmpdirname , __lowerCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : Optional[Any] , **__lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a_ ( self : Optional[Any] , **__lowerCAmelCase : int ) -> Optional[int]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a_ ( self : int ) -> int: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a_ ( self : Union[str, Any] ) -> int: """simple docstring""" A__ = np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta ) A__ = Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) return image_input def a_ ( self : Optional[Any] ) -> int: """simple docstring""" A__ = self.get_tokenizer() A__ = self.get_image_processor() A__ = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) A__ = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCAmelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def a_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" A__ = self.get_tokenizer() A__ = self.get_image_processor() A__ = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A__ = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) A__ = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def a_ ( self : str ) -> List[str]: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = self.prepare_image_inputs() A__ = image_processor(__lowerCAmelCase , return_tensors="""np""" ) A__ = processor(images=__lowerCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a_ ( self : Union[str, Any] ) -> str: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = """test""" A__ = processor(text=__lowerCAmelCase ) A__ = tokenizer(__lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a_ ( self : List[str] ) -> str: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = """test""" A__ = self.prepare_image_inputs() A__ = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def a_ ( self : int ) -> Union[str, Any]: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.char_decode(__lowerCAmelCase ) A__ = tokenizer.batch_decode(__lowerCAmelCase ) A__ = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : Dict ) -> int: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = None A__ = self.prepare_image_inputs() A__ = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def a_ ( self : List[str] ) -> List[Any]: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = torch.randn(1 , 27 , 38 ) A__ = torch.randn(1 , 27 , 5_02_57 ) A__ = torch.randn(1 , 27 , 3_05_22 ) A__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
274
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) A : Tuple = logging.getLogger(__name__) def __lowerCamelCase ( __a :Optional[int] , __a :List[str] ) -> Tuple: """simple docstring""" A__ = np.argmax(__a , axis=1 ) return np.sum(outputs == labels ) def __lowerCamelCase ( __a :Tuple ) -> Dict: """simple docstring""" with open(__a , encoding="""utf_8""" ) as f: A__ = csv.reader(__a ) A__ = [] next(__a ) # skip the first line for line in tqdm(__a ): output.append((""" """.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def __lowerCamelCase ( __a :Optional[int] , __a :List[Any] , __a :Dict , __a :Optional[Any] , __a :Optional[Any] , __a :int ) -> Union[str, Any]: """simple docstring""" A__ = [] for dataset in encoded_datasets: A__ = len(__a ) A__ = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) A__ = np.zeros((n_batch, 2) , dtype=np.intaa ) A__ = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) A__ = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(__a ): A__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] A__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] A__ = with_conta A__ = with_conta A__ = len(__a ) - 1 A__ = len(__a ) - 1 A__ = with_conta A__ = with_conta A__ = mc_label A__ = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(__a ) for t in all_inputs ) ) return tensor_datasets def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" A__ = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=__a , default="""openai-gpt""" , help="""pretrained model name""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_eval""" , action="""store_true""" , help="""Whether to run eval on the dev set.""" ) parser.add_argument( """--output_dir""" , default=__a , type=__a , required=__a , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument("""--train_dataset""" , type=__a , default="""""" ) parser.add_argument("""--eval_dataset""" , type=__a , default="""""" ) parser.add_argument("""--seed""" , type=__a , default=4_2 ) parser.add_argument("""--num_train_epochs""" , type=__a , default=3 ) parser.add_argument("""--train_batch_size""" , type=__a , default=8 ) parser.add_argument("""--eval_batch_size""" , type=__a , default=1_6 ) parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=__a , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , type=__a , default=1 ) parser.add_argument( """--max_steps""" , default=-1 , type=__a , help=( """If > 0: set total number of training steps to perform. Override num_train_epochs.""" ) , ) parser.add_argument( """--gradient_accumulation_steps""" , type=__a , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--learning_rate""" , type=__a , default=6.25E-5 ) parser.add_argument("""--warmup_steps""" , default=0 , type=__a , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--lr_schedule""" , type=__a , default="""warmup_linear""" ) parser.add_argument("""--weight_decay""" , type=__a , default=0.01 ) parser.add_argument("""--lm_coef""" , type=__a , default=0.9 ) parser.add_argument("""--n_valid""" , type=__a , default=3_7_4 ) parser.add_argument("""--server_ip""" , type=__a , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=__a , default="""""" , help="""Can be used for distant debugging.""" ) A__ = parser.parse_args() print(__a ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__a ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) A__ = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) A__ = torch.cuda.device_count() logger.info("""device: {}, n_gpu {}""".format(__a , __a ) ) if not args.do_train and not args.do_eval: raise ValueError("""At least one of `do_train` or `do_eval` must be True.""" ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset A__ = ["""_start_""", """_delimiter_""", """_classify_"""] A__ = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(__a ) A__ = tokenizer.convert_tokens_to_ids(__a ) A__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(__a ) ) model.to(__a ) # Load and encode the datasets def tokenize_and_encode(__a :Tuple ): if isinstance(__a , __a ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(__a ) ) elif isinstance(__a , __a ): return obj return [tokenize_and_encode(__a ) for o in obj] logger.info("""Encoding dataset...""" ) A__ = load_rocstories_dataset(args.train_dataset ) A__ = load_rocstories_dataset(args.eval_dataset ) A__ = (train_dataset, eval_dataset) A__ = tokenize_and_encode(__a ) # Compute the max input length for the Transformer A__ = model.config.n_positions // 2 - 2 A__ = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) A__ = min(__a , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders A__ = pre_process_datasets(__a , __a , __a , *__a ) A__ , A__ = tensor_datasets[0], tensor_datasets[1] A__ = TensorDataset(*__a ) A__ = RandomSampler(__a ) A__ = DataLoader(__a , sampler=__a , batch_size=args.train_batch_size ) A__ = TensorDataset(*__a ) A__ = SequentialSampler(__a ) A__ = DataLoader(__a , sampler=__a , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: A__ = args.max_steps A__ = args.max_steps // (len(__a ) // args.gradient_accumulation_steps) + 1 else: A__ = len(__a ) // args.gradient_accumulation_steps * args.num_train_epochs A__ = list(model.named_parameters() ) A__ = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""] A__ = [ { """params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], """weight_decay""": args.weight_decay, }, {"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0}, ] A__ = AdamW(__a , lr=args.learning_rate , eps=args.adam_epsilon ) A__ = get_linear_schedule_with_warmup( __a , num_warmup_steps=args.warmup_steps , num_training_steps=__a ) if args.do_train: A__ , A__ , A__ = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="""Epoch""" ): A__ = 0 A__ = 0 A__ = tqdm(__a , desc="""Training""" ) for step, batch in enumerate(__a ): A__ = tuple(t.to(__a ) for t in batch ) A__ , A__ , A__ , A__ = batch A__ = model(__a , mc_token_ids=__a , lm_labels=__a , mc_labels=__a ) A__ = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() A__ = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 A__ = """Training loss: {:.2e} lr: {:.2e}""".format(__a , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer A__ = model.module if hasattr(__a , """module""" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` A__ = os.path.join(args.output_dir , __a ) A__ = os.path.join(args.output_dir , __a ) torch.save(model_to_save.state_dict() , __a ) model_to_save.config.to_json_file(__a ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned A__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) A__ = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(__a ) if args.do_eval: model.eval() A__ , A__ = 0, 0 A__ , A__ = 0, 0 for batch in tqdm(__a , desc="""Evaluating""" ): A__ = tuple(t.to(__a ) for t in batch ) A__ , A__ , A__ , A__ = batch with torch.no_grad(): A__ , A__ , A__ , A__ = model( __a , mc_token_ids=__a , lm_labels=__a , mc_labels=__a ) A__ = mc_logits.detach().cpu().numpy() A__ = mc_labels.to("""cpu""" ).numpy() A__ = accuracy(__a , __a ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 A__ = eval_loss / nb_eval_steps A__ = eval_accuracy / nb_eval_examples A__ = tr_loss / nb_tr_steps if args.do_train else None A__ = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss} A__ = os.path.join(args.output_dir , """eval_results.txt""" ) with open(__a , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , __a , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) if __name__ == "__main__": main()
274
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a_ = logging.get_logger(__name__) a_ = { """shi-labs/dinat-mini-in1k-224""": """https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json""", # See all Dinat models at https://huggingface.co/models?filter=dinat } class __snake_case ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """dinat""" _lowerCamelCase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , __lowerCamelCase=4 , __lowerCamelCase=3 , __lowerCamelCase=64 , __lowerCamelCase=[3, 4, 6, 5] , __lowerCamelCase=[2, 4, 8, 16] , __lowerCamelCase=7 , __lowerCamelCase=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , __lowerCamelCase=3.0 , __lowerCamelCase=True , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-5 , __lowerCamelCase=0.0 , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) __A : Dict = patch_size __A : Union[str, Any] = num_channels __A : str = embed_dim __A : Optional[Any] = depths __A : int = len(__lowerCamelCase ) __A : Union[str, Any] = num_heads __A : Tuple = kernel_size __A : Optional[int] = dilations __A : Tuple = mlp_ratio __A : Optional[int] = qkv_bias __A : int = hidden_dropout_prob __A : Dict = attention_probs_dropout_prob __A : int = drop_path_rate __A : Dict = hidden_act __A : Any = layer_norm_eps __A : Tuple = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __A : str = int(embed_dim * 2 ** (len(__lowerCamelCase ) - 1) ) __A : List[Any] = layer_scale_init_value __A : Any = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(__lowerCamelCase ) + 1 )] __A , __A : Union[str, Any] = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
291
"""simple docstring""" a_ = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) a_ = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 12, """Pm""": 15, """Em""": 18, """Zm""": 21, """Ym""": 24, } def __lowercase ( snake_case_ : float ,snake_case_ : str ,snake_case_ : str ) ->float: '''simple docstring''' __A : Tuple = from_type.lower().strip('''s''' ) __A : Optional[int] = to_type.lower().strip('''s''' ) __A : List[str] = UNIT_SYMBOL.get(snake_case_ ,snake_case_ ) __A : Any = UNIT_SYMBOL.get(snake_case_ ,snake_case_ ) if from_sanitized not in METRIC_CONVERSION: __A : int = ( F"""Invalid 'from_type' value: {from_type!r}.\n""" F"""Conversion abbreviations are: {', '.join(snake_case_ )}""" ) raise ValueError(snake_case_ ) if to_sanitized not in METRIC_CONVERSION: __A : str = ( F"""Invalid 'to_type' value: {to_type!r}.\n""" F"""Conversion abbreviations are: {', '.join(snake_case_ )}""" ) raise ValueError(snake_case_ ) __A : Optional[Any] = METRIC_CONVERSION[from_sanitized] __A : Optional[int] = METRIC_CONVERSION[to_sanitized] __A : Union[str, Any] = 1 if from_exponent > to_exponent: __A : Dict = from_exponent - to_exponent else: __A : Union[str, Any] = -(to_exponent - from_exponent) return value * pow(10 ,snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
291
1
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class lowerCAmelCase_ : '''simple docstring''' @staticmethod def A__ ( *snake_case_ , **snake_case_ ) -> Dict: pass def lowercase (_lowerCAmelCase ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. SCREAMING_SNAKE_CASE_ = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' _snake_case = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> int: __lowerCAmelCase = pipeline( """document-question-answering""" , model=snake_case_ , tokenizer=snake_case_ , image_processor=snake_case_ ) __lowerCAmelCase = INVOICE_URL __lowerCAmelCase = list(zip(*apply_tesseract(load_image(snake_case_ ) , snake_case_ , """""" ) ) ) __lowerCAmelCase = """What is the placebo?""" __lowerCAmelCase = [ { """image""": load_image(snake_case_ ), """question""": question, }, { """image""": image, """question""": question, }, { """image""": image, """question""": question, """word_boxes""": word_boxes, }, ] return dqa_pipeline, examples def A__ ( self , snake_case_ , snake_case_ ) -> Union[str, Any]: __lowerCAmelCase = dqa_pipeline(snake_case_ , top_k=2 ) self.assertEqual( snake_case_ , [ [ {"""score""": ANY(snake_case_ ), """answer""": ANY(snake_case_ ), """start""": ANY(snake_case_ ), """end""": ANY(snake_case_ )}, {"""score""": ANY(snake_case_ ), """answer""": ANY(snake_case_ ), """start""": ANY(snake_case_ ), """end""": ANY(snake_case_ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def A__ ( self ) -> str: __lowerCAmelCase = pipeline("""document-question-answering""" , model="""hf-internal-testing/tiny-random-layoutlmv2""" ) __lowerCAmelCase = INVOICE_URL __lowerCAmelCase = """How many cats are there?""" __lowerCAmelCase = [ {"""score""": 0.0_001, """answer""": """oy 2312/2019""", """start""": 38, """end""": 39}, {"""score""": 0.0_001, """answer""": """oy 2312/2019 DUE""", """start""": 38, """end""": 40}, ] __lowerCAmelCase = dqa_pipeline(image=snake_case_ , question=snake_case_ , top_k=2 ) self.assertEqual(nested_simplify(snake_case_ , decimals=4 ) , snake_case_ ) __lowerCAmelCase = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual(nested_simplify(snake_case_ , decimals=4 ) , snake_case_ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __lowerCAmelCase = """./tests/fixtures/tests_samples/COCO/000000039769.png""" __lowerCAmelCase = dqa_pipeline(image=snake_case_ , question=snake_case_ , top_k=2 ) self.assertEqual(snake_case_ , [] ) # We can optionnally pass directly the words and bounding boxes __lowerCAmelCase = """./tests/fixtures/tests_samples/COCO/000000039769.png""" __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = dqa_pipeline(image=snake_case_ , question=snake_case_ , words=snake_case_ , boxes=snake_case_ , top_k=2 ) self.assertEqual(snake_case_ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self ) -> str: __lowerCAmelCase = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , ) __lowerCAmelCase = INVOICE_URL __lowerCAmelCase = """What is the invoice number?""" __lowerCAmelCase = dqa_pipeline(image=snake_case_ , question=snake_case_ , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) __lowerCAmelCase = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) __lowerCAmelCase = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 16, """end""": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , max_seq_len=50 , ) __lowerCAmelCase = INVOICE_URL __lowerCAmelCase = """What is the invoice number?""" __lowerCAmelCase = dqa_pipeline(image=snake_case_ , question=snake_case_ , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) __lowerCAmelCase = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) __lowerCAmelCase = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self ) -> int: __lowerCAmelCase = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=snake_case_ ) __lowerCAmelCase = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=snake_case_ , revision="""3dc6de3""" , ) __lowerCAmelCase = INVOICE_URL __lowerCAmelCase = """What is the invoice number?""" __lowerCAmelCase = dqa_pipeline(image=snake_case_ , question=snake_case_ , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) __lowerCAmelCase = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) __lowerCAmelCase = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] ] * 2 , ) __lowerCAmelCase = list(zip(*apply_tesseract(load_image(snake_case_ ) , snake_case_ , """""" ) ) ) # This model should also work if `image` is set to None __lowerCAmelCase = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self ) -> str: __lowerCAmelCase = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=snake_case_ ) __lowerCAmelCase = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=snake_case_ , revision="""3dc6de3""" , max_seq_len=50 , ) __lowerCAmelCase = INVOICE_URL __lowerCAmelCase = """What is the invoice number?""" __lowerCAmelCase = dqa_pipeline(image=snake_case_ , question=snake_case_ , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) __lowerCAmelCase = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) __lowerCAmelCase = list(zip(*apply_tesseract(load_image(snake_case_ ) , snake_case_ , """""" ) ) ) # This model should also work if `image` is set to None __lowerCAmelCase = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) @slow @require_torch def A__ ( self ) -> str: __lowerCAmelCase = pipeline( """document-question-answering""" , model="""naver-clova-ix/donut-base-finetuned-docvqa""" , tokenizer=AutoTokenizer.from_pretrained("""naver-clova-ix/donut-base-finetuned-docvqa""" ) , feature_extractor="""naver-clova-ix/donut-base-finetuned-docvqa""" , ) __lowerCAmelCase = INVOICE_URL __lowerCAmelCase = """What is the invoice number?""" __lowerCAmelCase = dqa_pipeline(image=snake_case_ , question=snake_case_ , top_k=2 ) self.assertEqual(nested_simplify(snake_case_ , decimals=4 ) , [{"""answer""": """us-001"""}] ) @require_tf @unittest.skip("""Document question answering not implemented in TF""" ) def A__ ( self ) -> int: pass
301
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = DebertaVaTokenizer _snake_case = DebertaVaTokenizerFast _snake_case = True _snake_case = True def A__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self , snake_case_ ) -> List[Any]: __lowerCAmelCase = """this is a test""" __lowerCAmelCase = """this is a test""" return input_text, output_text def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = """<pad>""" __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(snake_case_ ) , 30_001 ) def A__ ( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> int: pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> Dict: pass def A__ ( self ) -> List[str]: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Dict: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Tuple: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> int: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> str: __lowerCAmelCase = """This is a test""" __lowerCAmelCase = [13, 1, 4_398, 25, 21, 1_289] __lowerCAmelCase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] __lowerCAmelCase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = DebertaVaTokenizer(snake_case_ ) __lowerCAmelCase = tokenizer.encode("""sequence builders""" ) __lowerCAmelCase = tokenizer.encode("""multi-sequence build""" ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case_ , ) @slow def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
301
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = '''▁''' __A = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __A = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } __A = { '''facebook/m2m100_418M''': 10_24, } # fmt: off __A = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class lowercase_ ( __lowercase ): UpperCamelCase_ : str = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = ["input_ids", "attention_mask"] UpperCamelCase_ : List[int] = [] UpperCamelCase_ : List[int] = [] def __init__( self : str , A__ : str , A__ : Optional[Any] , A__ : Union[str, Any]=None , A__ : Dict=None , A__ : Any="<s>" , A__ : Union[str, Any]="</s>" , A__ : Tuple="</s>" , A__ : Dict="<pad>" , A__ : List[Any]="<unk>" , A__ : str="m2m100" , A__ : Optional[Dict[str, Any]] = None , A__ : List[Any]=8 , **A__ : Union[str, Any] , ) -> None: _snake_case = {} if sp_model_kwargs is None else sp_model_kwargs _snake_case = language_codes _snake_case = FAIRSEQ_LANGUAGE_CODES[language_codes] _snake_case = {lang_code: f"""__{lang_code}__""" for lang_code in fairseq_language_code} _snake_case = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A__ ) for lang_code in fairseq_language_code if self.get_lang_token(A__ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A__ , tgt_lang=A__ , bos_token=A__ , eos_token=A__ , sep_token=A__ , unk_token=A__ , pad_token=A__ , language_codes=A__ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A__ , **A__ , ) _snake_case = vocab_file _snake_case = load_json(A__ ) _snake_case = {v: k for k, v in self.encoder.items()} _snake_case = spm_file _snake_case = load_spm(A__ , self.sp_model_kwargs ) _snake_case = len(self.encoder ) _snake_case = { self.get_lang_token(A__ ): self.encoder_size + i for i, lang_code in enumerate(A__ ) } _snake_case = {lang_code: self.encoder_size + i for i, lang_code in enumerate(A__ )} _snake_case = {v: k for k, v in self.lang_token_to_id.items()} _snake_case = src_lang if src_lang is not None else '''en''' _snake_case = tgt_lang _snake_case = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _snake_case = num_madeup_words @property def UpperCamelCase_ ( self : int ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def UpperCamelCase_ ( self : Dict ) -> str: return self._src_lang @src_lang.setter def UpperCamelCase_ ( self : List[str] , A__ : str ) -> None: _snake_case = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase_ ( self : Any , A__ : str ) -> List[str]: return self.sp_model.encode(A__ , out_type=A__ ) def UpperCamelCase_ ( self : Optional[int] , A__ : Dict ) -> str: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A__ , self.encoder[self.unk_token] ) def UpperCamelCase_ ( self : Union[str, Any] , A__ : int ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A__ , self.unk_token ) def UpperCamelCase_ ( self : Optional[int] , A__ : Optional[int] ) -> List[Any]: _snake_case = [] _snake_case = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A__ ) + token _snake_case = [] else: current_sub_tokens.append(A__ ) out_string += self.sp_model.decode(A__ ) return out_string.strip() def UpperCamelCase_ ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None , A__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) _snake_case = [1] * len(self.prefix_tokens ) _snake_case = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A__ )) + suffix_ones return prefix_ones + ([0] * len(A__ )) + ([0] * len(A__ )) + suffix_ones def UpperCamelCase_ ( self : Tuple , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ ( self : str ) -> Dict: _snake_case = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Dict: _snake_case = self.__dict__.copy() _snake_case = None return state def __setstate__( self : Union[str, Any] , A__ : Dict ) -> None: _snake_case = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _snake_case = {} _snake_case = load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCamelCase_ ( self : Any , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: _snake_case = Path(A__ ) if not save_dir.is_dir(): raise OSError(f"""{save_directory} should be a directory""" ) _snake_case = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) _snake_case = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , A__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(A__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A__ ) elif not os.path.isfile(self.spm_file ): with open(A__ , '''wb''' ) as fi: _snake_case = self.sp_model.serialized_model_proto() fi.write(A__ ) return (str(A__ ), str(A__ )) def UpperCamelCase_ ( self : Optional[int] , A__ : List[str] , A__ : str = "en" , A__ : Optional[List[str]] = None , A__ : str = "ro" , **A__ : List[Any] , ) -> BatchEncoding: _snake_case = src_lang _snake_case = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A__ , A__ , **A__ ) def UpperCamelCase_ ( self : List[str] , A__ : int , A__ : Optional[str] , A__ : Optional[str] , **A__ : Union[str, Any] ) -> Tuple: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _snake_case = src_lang _snake_case = self(A__ , add_special_tokens=A__ , **A__ ) _snake_case = self.get_lang_id(A__ ) _snake_case = tgt_lang_id return inputs def UpperCamelCase_ ( self : Dict ) -> Optional[Any]: self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase_ ( self : Optional[Any] ) -> Dict: self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase_ ( self : List[Any] , A__ : str ) -> None: _snake_case = self.get_lang_token(A__ ) _snake_case = self.lang_token_to_id[lang_token] _snake_case = [self.cur_lang_id] _snake_case = [self.eos_token_id] def UpperCamelCase_ ( self : List[str] , A__ : str ) -> None: _snake_case = self.get_lang_token(A__ ) _snake_case = self.lang_token_to_id[lang_token] _snake_case = [self.cur_lang_id] _snake_case = [self.eos_token_id] def UpperCamelCase_ ( self : Dict , A__ : str ) -> str: return self.lang_code_to_token[lang] def UpperCamelCase_ ( self : Tuple , A__ : str ) -> int: _snake_case = self.get_lang_token(A__ ) return self.lang_token_to_id[lang_token] def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" _snake_case = sentencepiece.SentencePieceProcessor(**_UpperCamelCase ) spm.Load(str(_UpperCamelCase ) ) return spm def snake_case_(_UpperCamelCase ) -> Union[Dict, List]: """simple docstring""" with open(_UpperCamelCase , '''r''' ) as f: return json.load(_UpperCamelCase ) def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> None: """simple docstring""" with open(_UpperCamelCase , '''w''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase , indent=2 )
278
from math import factorial def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(_UpperCamelCase ) // (factorial(_UpperCamelCase ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( '''If a class of 40 students must be arranged into groups of''', f'''4 for group projects, there are {combinations(40, 4)} ways''', '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f'''are {combinations(10, 3)} ways that first, second and''', '''third place can be awarded.''', )
278
1
from queue import PriorityQueue from typing import Any import numpy as np def _a ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : set , SCREAMING_SNAKE_CASE_ : set , SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : PriorityQueue , SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue __lowerCAmelCase = cst_fwd.get(SCREAMING_SNAKE_CASE_ , np.inf ) __lowerCAmelCase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) __lowerCAmelCase = new_cost_f __lowerCAmelCase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: __lowerCAmelCase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : dict ): __lowerCAmelCase = -1 __lowerCAmelCase = set() __lowerCAmelCase = set() __lowerCAmelCase = {source: 0} __lowerCAmelCase = {destination: 0} __lowerCAmelCase = {source: None} __lowerCAmelCase = {destination: None} __lowerCAmelCase = PriorityQueue() __lowerCAmelCase = PriorityQueue() __lowerCAmelCase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): __lowerCAmelCase , __lowerCAmelCase = queue_forward.get() visited_forward.add(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase , __lowerCAmelCase = queue_backward.get() visited_backward.add(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = pass_and_relaxation( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __lowerCAmelCase = pass_and_relaxation( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: __lowerCAmelCase = shortest_distance return shortest_path_distance UpperCamelCase__ = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } UpperCamelCase__ = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
92
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__: Dict = logging.get_logger(__name__) A__: Tuple = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Tuple = "roc_bert" def __init__( self :Optional[int] , SCREAMING_SNAKE_CASE :Tuple=3_0_5_2_2 , SCREAMING_SNAKE_CASE :List[str]=7_6_8 , SCREAMING_SNAKE_CASE :Dict=1_2 , SCREAMING_SNAKE_CASE :List[str]=1_2 , SCREAMING_SNAKE_CASE :Tuple=3_0_7_2 , SCREAMING_SNAKE_CASE :List[Any]="gelu" , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=0.1 , SCREAMING_SNAKE_CASE :int=5_1_2 , SCREAMING_SNAKE_CASE :Optional[Any]=2 , SCREAMING_SNAKE_CASE :Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE :Optional[Any]=1e-12 , SCREAMING_SNAKE_CASE :Any=True , SCREAMING_SNAKE_CASE :List[Any]=0 , SCREAMING_SNAKE_CASE :Optional[int]="absolute" , SCREAMING_SNAKE_CASE :Union[str, Any]=None , SCREAMING_SNAKE_CASE :List[Any]=True , SCREAMING_SNAKE_CASE :int=True , SCREAMING_SNAKE_CASE :Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE :Optional[Any]=9_1_0 , SCREAMING_SNAKE_CASE :Union[str, Any]=5_1_2 , SCREAMING_SNAKE_CASE :str=2_4_8_5_8 , SCREAMING_SNAKE_CASE :List[Any]=True , **SCREAMING_SNAKE_CASE :Tuple , ) -> Optional[int]: '''simple docstring''' _a : List[str] =vocab_size _a : List[str] =max_position_embeddings _a : Optional[Any] =hidden_size _a : List[Any] =num_hidden_layers _a : List[str] =num_attention_heads _a : int =intermediate_size _a : Any =hidden_act _a : Dict =hidden_dropout_prob _a : int =attention_probs_dropout_prob _a : str =initializer_range _a : Optional[int] =type_vocab_size _a : Any =layer_norm_eps _a : Any =use_cache _a : Optional[int] =enable_pronunciation _a : Optional[Any] =enable_shape _a : Optional[Any] =pronunciation_embed_dim _a : Tuple =pronunciation_vocab_size _a : Union[str, Any] =shape_embed_dim _a : Any =shape_vocab_size _a : Tuple =concat_input _a : List[str] =position_embedding_type _a : List[str] =classifier_dropout super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
276
0
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCAmelCase ) class lowerCamelCase ( __lowerCAmelCase ): def __init__( self, **lowercase_ ) -> List[str]: super().__init__(**lowercase_ ) requires_backends(self, 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self, lowercase_, **lowercase_ ) -> Union[str, Any]: return super().__call__(lowercase_, **lowercase_ ) def _lowerCamelCase ( self, **lowercase_ ) -> Union[str, Any]: snake_case = {} if "candidate_labels" in kwargs: snake_case = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: snake_case = kwargs['hypothesis_template'] return preprocess_params, {}, {} def _lowerCamelCase ( self, lowercase_, lowercase_=None, lowercase_="This is a photo of {}." ) -> Optional[int]: snake_case = load_image(lowercase_ ) snake_case = self.image_processor(images=[image], return_tensors=self.framework ) snake_case = candidate_labels snake_case = [hypothesis_template.format(lowercase_ ) for x in candidate_labels] snake_case = self.tokenizer(lowercase_, return_tensors=self.framework, padding=lowercase_ ) snake_case = [text_inputs] return inputs def _lowerCamelCase ( self, lowercase_ ) -> Optional[int]: snake_case = model_inputs.pop('candidate_labels' ) snake_case = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0], lowercase_ ): snake_case = text_inputs[0] else: # Batching case. snake_case = text_inputs[0][0] snake_case = self.model(**lowercase_, **lowercase_ ) snake_case = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def _lowerCamelCase ( self, lowercase_ ) -> int: snake_case = model_outputs.pop('candidate_labels' ) snake_case = model_outputs['logits'][0] if self.framework == "pt": snake_case = logits.softmax(dim=-1 ).squeeze(-1 ) snake_case = probs.tolist() if not isinstance(lowercase_, lowercase_ ): snake_case = [scores] elif self.framework == "tf": snake_case = stable_softmax(lowercase_, axis=-1 ) snake_case = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) snake_case = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(lowercase_, lowercase_ ), key=lambda lowercase_ : -x[0] ) ] return result
362
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase_ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } lowerCAmelCase_ = { "allenai/led-base-16384": 1_6_3_8_4, } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = LEDTokenizer snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int: super().__init__( lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, ) snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) ) snake_case = add_prefix_space snake_case = pre_tok_class(**lowercase_ ) snake_case = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case = 'post_processor' snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ ) if tokenizer_component_instance: snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case = tuple(state['sep'] ) if "cls" in state: snake_case = tuple(state['cls'] ) snake_case = False if state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = add_prefix_space snake_case = True if state.get('trim_offsets', lowercase_ ) != trim_offsets: snake_case = trim_offsets snake_case = True if changes_to_apply: snake_case = getattr(lowercase_, state.pop('type' ) ) snake_case = component_class(**lowercase_ ) setattr(self.backend_tokenizer, lowercase_, lowercase_ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _lowerCamelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self, lowercase_ ) -> Any: snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value snake_case = value def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]: snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ ) return tuple(lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict: snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict: snake_case = super()._pad( encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, ) # Load from model defaults if return_attention_mask is None: snake_case = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ ) if needs_to_be_padded: snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": snake_case = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
332
0
'''simple docstring''' _lowerCAmelCase = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] _lowerCAmelCase = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] _lowerCAmelCase = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] _lowerCAmelCase = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] _lowerCAmelCase = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] _lowerCAmelCase = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] _lowerCAmelCase = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] _lowerCAmelCase = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
298
"""simple docstring""" def lowercase__ ( _UpperCAmelCase ) -> int: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('Input value must be an \'int\' type' ) lowercase : str = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
255
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : Dict = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _lowerCamelCase : Tuple = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } _lowerCamelCase : Any = { "gpt2": 1_0_2_4, "gpt2-medium": 1_0_2_4, "gpt2-large": 1_0_2_4, "gpt2-xl": 1_0_2_4, "distilgpt2": 1_0_2_4, } class __snake_case (_a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = GPTaTokenizer def __init__( self : List[Any] , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[str]="<|endoftext|>" , _UpperCAmelCase : List[Any]="<|endoftext|>" , _UpperCAmelCase : int="<|endoftext|>" , _UpperCAmelCase : Optional[int]=False , **_UpperCAmelCase : Optional[Any] , ) -> Union[str, Any]: '''simple docstring''' super().__init__( _UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , unk_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , ) _lowerCAmelCase : str = kwargs.pop("""add_bos_token""" , _UpperCAmelCase ) _lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _UpperCAmelCase ) != add_prefix_space: _lowerCAmelCase : int = getattr(_UpperCAmelCase , pre_tok_state.pop("""type""" ) ) _lowerCAmelCase : List[Any] = add_prefix_space _lowerCAmelCase : Optional[Any] = pre_tok_class(**_UpperCAmelCase ) _lowerCAmelCase : List[str] = add_prefix_space def SCREAMING_SNAKE_CASE ( self : str , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Optional[int] ) -> BatchEncoding: '''simple docstring''' _lowerCAmelCase : str = kwargs.get("""is_split_into_words""" , _UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int , *_UpperCAmelCase : int , **_UpperCAmelCase : List[str] ) -> BatchEncoding: '''simple docstring''' _lowerCAmelCase : List[str] = kwargs.get("""is_split_into_words""" , _UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' _lowerCAmelCase : Tuple = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict , _UpperCAmelCase : "Conversation" ) -> List[int]: '''simple docstring''' _lowerCAmelCase : str = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) + [self.eos_token_id] ) if len(_UpperCAmelCase ) > self.model_max_length: _lowerCAmelCase : Any = input_ids[-self.model_max_length :] return input_ids
159
from __future__ import annotations from typing import Generic, TypeVar _lowerCamelCase : Dict = TypeVar("T") class __snake_case (Generic[T] ): def __init__( self : Dict , _UpperCAmelCase : T ) -> None: '''simple docstring''' _lowerCAmelCase : List[Any] = data _lowerCAmelCase : str = self _lowerCAmelCase : Tuple = 0 class __snake_case (Generic[T] ): def __init__( self : Optional[int] ) -> None: '''simple docstring''' _lowerCAmelCase : dict[T, DisjointSetTreeNode[T]] = {} def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCAmelCase : T ) -> None: '''simple docstring''' _lowerCAmelCase : int = DisjointSetTreeNode(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCAmelCase : T ) -> DisjointSetTreeNode[T]: '''simple docstring''' _lowerCAmelCase : List[str] = self.map[data] if elem_ref != elem_ref.parent: _lowerCAmelCase : Union[str, Any] = self.find_set(elem_ref.parent.data ) return elem_ref.parent def SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCAmelCase : DisjointSetTreeNode[T] , _UpperCAmelCase : DisjointSetTreeNode[T] ) -> None: '''simple docstring''' if nodea.rank > nodea.rank: _lowerCAmelCase : Dict = nodea else: _lowerCAmelCase : Union[str, Any] = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def SCREAMING_SNAKE_CASE ( self : Dict , _UpperCAmelCase : T , _UpperCAmelCase : T ) -> None: '''simple docstring''' self.link(self.find_set(_UpperCAmelCase ) , self.find_set(_UpperCAmelCase ) ) class __snake_case (Generic[T] ): def __init__( self : Optional[int] ) -> None: '''simple docstring''' _lowerCAmelCase : dict[T, dict[T, int]] = {} def SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCAmelCase : T ) -> None: '''simple docstring''' if node not in self.connections: _lowerCAmelCase : int = {} def SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCAmelCase : T , _UpperCAmelCase : T , _UpperCAmelCase : int ) -> None: '''simple docstring''' self.add_node(_UpperCAmelCase ) self.add_node(_UpperCAmelCase ) _lowerCAmelCase : Any = weight _lowerCAmelCase : int = weight def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> GraphUndirectedWeighted[T]: '''simple docstring''' _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Union[str, Any] = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda _UpperCAmelCase : x[2] ) # creating the disjoint set _lowerCAmelCase : Dict = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(_UpperCAmelCase ) # MST generation _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : Any = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = edges[index] index += 1 _lowerCAmelCase : Dict = disjoint_set.find_set(_UpperCAmelCase ) _lowerCAmelCase : List[str] = disjoint_set.find_set(_UpperCAmelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) disjoint_set.union(_UpperCAmelCase , _UpperCAmelCase ) return graph
159
1
"""simple docstring""" import argparse lowerCAmelCase : str = """docs/source/_static/js/custom.js""" def a__ ( snake_case__ ) -> List[str]: with open(snake_case__ , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase = f.readlines() lowerCamelCase = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 lowerCamelCase = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(snake_case__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(snake_case__ ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") lowerCAmelCase : Optional[Any] = parser.parse_args() update_custom_js(args.version)
291
"""simple docstring""" from __future__ import annotations def a__ ( snake_case__ , snake_case__ ) -> bool: if len(snake_case__ ) == 0: return False lowerCamelCase = len(snake_case__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , snake_case__ ) else: return binary_search(a_list[midpoint + 1 :] , snake_case__ ) if __name__ == "__main__": lowerCAmelCase : List[Any] = input("""Enter numbers separated by comma:\n""").strip() lowerCAmelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(""",""")] lowerCAmelCase : Optional[int] = int(input("""Enter the number to be found in the list:\n""").strip()) lowerCAmelCase : Union[str, Any] = """""" if binary_search(sequence, target) else """not """ print(F"""{target} was {not_str}found in {sequence}""")
291
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _A = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
362
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _A = """__DUMMY_TRANSFORMERS_USER__""" _A = """Dummy User""" _A = """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""" _A = """https://hub-ci.huggingface.co""" _A = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" _A = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" _A = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def a__ ( lowerCAmelCase ) -> Union[str, Any]: monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , lowerCAmelCase ) @pytest.fixture def a__ ( lowerCAmelCase ) -> List[Any]: monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , lowerCAmelCase ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , lowerCAmelCase ) @pytest.fixture def a__ ( lowerCAmelCase ) -> List[Any]: monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , lowerCAmelCase ) @pytest.fixture def a__ ( lowerCAmelCase , lowerCAmelCase ) -> str: HfFolder.save_token(lowerCAmelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def a__ ( ) -> List[str]: return HfApi(endpoint=lowerCAmelCase ) @pytest.fixture(scope="""session""" ) def a__ ( lowerCAmelCase ) -> Union[str, Any]: UpperCAmelCase__ : List[str] = HfFolder.get_token() HfFolder.save_token(lowerCAmelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(lowerCAmelCase ) @pytest.fixture def a__ ( lowerCAmelCase ) -> List[str]: def _cleanup_repo(lowerCAmelCase ): hf_api.delete_repo(lowerCAmelCase , token=lowerCAmelCase , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def a__ ( lowerCAmelCase ) -> Optional[Any]: @contextmanager def _temporary_repo(lowerCAmelCase ): try: yield repo_id finally: cleanup_repo(lowerCAmelCase ) return _temporary_repo @pytest.fixture(scope="""session""" ) def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Union[str, Any]: UpperCAmelCase__ : str = F"""repo_txt_data-{int(time.time() * 10E3 )}""" UpperCAmelCase__ : List[str] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCAmelCase , token=lowerCAmelCase , repo_type="""dataset""" , private=lowerCAmelCase ) hf_api.upload_file( token=lowerCAmelCase , path_or_fileobj=str(lowerCAmelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=lowerCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(lowerCAmelCase , token=lowerCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> List[Any]: return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> int: UpperCAmelCase__ : List[Any] = F"""repo_zipped_txt_data-{int(time.time() * 10E3 )}""" UpperCAmelCase__ : Any = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCAmelCase , token=lowerCAmelCase , repo_type="""dataset""" , private=lowerCAmelCase ) hf_api.upload_file( token=lowerCAmelCase , path_or_fileobj=str(lowerCAmelCase ) , path_in_repo="""data.zip""" , repo_id=lowerCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(lowerCAmelCase , token=lowerCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Dict: return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Tuple: UpperCAmelCase__ : Union[str, Any] = F"""repo_zipped_img_data-{int(time.time() * 10E3 )}""" UpperCAmelCase__ : Optional[int] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCAmelCase , token=lowerCAmelCase , repo_type="""dataset""" , private=lowerCAmelCase ) hf_api.upload_file( token=lowerCAmelCase , path_or_fileobj=str(lowerCAmelCase ) , path_in_repo="""data.zip""" , repo_id=lowerCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(lowerCAmelCase , token=lowerCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[Any]: return hf_private_dataset_repo_zipped_img_data_
166
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging _A = logging.get_logger(__name__) _A = { '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''', } class A ( __UpperCAmelCase ): __snake_case = 'bloom' __snake_case = ['past_key_values'] __snake_case = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self, UpperCamelCase__=25_0880, UpperCamelCase__=64, UpperCamelCase__=2, UpperCamelCase__=8, UpperCamelCase__=1E-5, UpperCamelCase__=0.02, UpperCamelCase__=True, UpperCamelCase__=1, UpperCamelCase__=2, UpperCamelCase__=False, UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=1, UpperCamelCase__=False, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = vocab_size # Backward compatibility with n_embed kwarg lowerCAmelCase_ = kwargs.pop('''n_embed''', UpperCamelCase__ ) lowerCAmelCase_ = hidden_size if n_embed is None else n_embed lowerCAmelCase_ = n_layer lowerCAmelCase_ = n_head lowerCAmelCase_ = layer_norm_epsilon lowerCAmelCase_ = initializer_range lowerCAmelCase_ = use_cache lowerCAmelCase_ = pretraining_tp lowerCAmelCase_ = apply_residual_connection_post_layernorm lowerCAmelCase_ = hidden_dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = slow_but_exact super().__init__(bos_token_id=UpperCamelCase__, eos_token_id=UpperCamelCase__, **UpperCamelCase__ ) class A ( __UpperCAmelCase ): __snake_case = version.parse('1.12' ) def __init__( self, UpperCamelCase__, UpperCamelCase__ = "default", UpperCamelCase__ = None, UpperCamelCase__ = False, ): """simple docstring""" super().__init__(UpperCamelCase__, task=UpperCamelCase__, patching_specs=UpperCamelCase__, use_past=UpperCamelCase__ ) if not getattr(self._config, '''pad_token_id''', UpperCamelCase__ ): # TODO: how to do that better? lowerCAmelCase_ = 0 @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(UpperCamelCase__, direction='''inputs''', inverted_values_shape=UpperCamelCase__ ) lowerCAmelCase_ = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowerCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self._config.n_layer @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self._config.n_head @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return 1E-3 def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = -1, UpperCamelCase__ = -1, UpperCamelCase__ = False, UpperCamelCase__ = None, ): """simple docstring""" lowerCAmelCase_ = super(UpperCamelCase__, self ).generate_dummy_inputs( UpperCamelCase__, batch_size=UpperCamelCase__, seq_length=UpperCamelCase__, is_pair=UpperCamelCase__, framework=UpperCamelCase__ ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowerCAmelCase_ = seqlen + 2 lowerCAmelCase_ = self._config.hidden_size // self.num_attention_heads lowerCAmelCase_ = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowerCAmelCase_ = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowerCAmelCase_ = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(self.num_layers ) ] lowerCAmelCase_ = common_inputs['''attention_mask'''] if self.use_past: lowerCAmelCase_ = ordered_inputs['''attention_mask'''].dtype lowerCAmelCase_ = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(UpperCamelCase__, UpperCamelCase__, dtype=UpperCamelCase__ )], dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return 13
278
def __UpperCamelCase ( _A = 1000000 ): lowerCAmelCase_ = 1 lowerCAmelCase_ = 1 lowerCAmelCase_ = {1: 1} for inputa in range(2 , _A ): lowerCAmelCase_ = 0 lowerCAmelCase_ = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: lowerCAmelCase_ = (3 * number) + 1 counter += 1 if inputa not in counters: lowerCAmelCase_ = counter if counter > pre_counter: lowerCAmelCase_ = inputa lowerCAmelCase_ = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
278
1
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _a : def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any]=13 , _SCREAMING_SNAKE_CASE : List[str]=64 , _SCREAMING_SNAKE_CASE : int=2 , _SCREAMING_SNAKE_CASE : List[str]=3 , _SCREAMING_SNAKE_CASE : Optional[Any]=True , _SCREAMING_SNAKE_CASE : Union[str, Any]=True , _SCREAMING_SNAKE_CASE : List[str]=32 , _SCREAMING_SNAKE_CASE : List[Any]=5 , _SCREAMING_SNAKE_CASE : Optional[Any]=4 , _SCREAMING_SNAKE_CASE : Optional[Any]=37 , _SCREAMING_SNAKE_CASE : Optional[int]="gelu" , _SCREAMING_SNAKE_CASE : List[Any]=0.1 , _SCREAMING_SNAKE_CASE : Optional[int]=0.1 , _SCREAMING_SNAKE_CASE : str=10 , _SCREAMING_SNAKE_CASE : Union[str, Any]=0.02 , _SCREAMING_SNAKE_CASE : Union[str, Any]=[1, 16, 4, 4] , _SCREAMING_SNAKE_CASE : Optional[Any]=None , )-> Any: lowerCAmelCase__ : int = parent lowerCAmelCase__ : str = batch_size lowerCAmelCase__ : List[str] = image_size lowerCAmelCase__ : List[Any] = patch_size lowerCAmelCase__ : str = num_channels lowerCAmelCase__ : Any = is_training lowerCAmelCase__ : Dict = use_labels lowerCAmelCase__ : Dict = hidden_size lowerCAmelCase__ : List[Any] = num_hidden_layers lowerCAmelCase__ : Tuple = num_attention_heads lowerCAmelCase__ : Union[str, Any] = intermediate_size lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : str = hidden_dropout_prob lowerCAmelCase__ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase__ : Any = type_sequence_label_size lowerCAmelCase__ : Union[str, Any] = initializer_range lowerCAmelCase__ : Dict = scope lowerCAmelCase__ : int = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowerCAmelCase__ : Optional[int] = (self.image_size // 32) ** 2 lowerCAmelCase__ : Any = num_patches + 1 def UpperCAmelCase__( self : Optional[Any] )-> List[Any]: lowerCAmelCase__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : List[str] = None if self.use_labels: lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Tuple = self.get_config() return config, pixel_values, labels def UpperCAmelCase__( self : Tuple )-> Union[str, Any]: lowerCAmelCase__ : Any = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_SCREAMING_SNAKE_CASE , ) def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[int] )-> Optional[Any]: lowerCAmelCase__ : Any = ViTHybridModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : List[str] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int )-> Union[str, Any]: lowerCAmelCase__ : Optional[Any] = self.type_sequence_label_size lowerCAmelCase__ : Optional[Any] = ViTHybridForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Optional[Any] = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__( self : List[Any] )-> Tuple: lowerCAmelCase__ : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = config_and_inputs lowerCAmelCase__ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _a ( _lowercase , _lowercase , unittest.TestCase): _a : Dict = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () _a : Tuple = ( {'''feature-extraction''': ViTHybridModel, '''image-classification''': ViTHybridForImageClassification} if is_torch_available() else {} ) _a : Dict = False _a : Optional[int] = False _a : Optional[int] = False def UpperCAmelCase__( self : Dict )-> Any: lowerCAmelCase__ : Optional[Any] = ViTHybridModelTester(self ) lowerCAmelCase__ : List[str] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase__( self : Optional[int] )-> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def UpperCAmelCase__( self : int )-> int: pass def UpperCAmelCase__( self : Optional[int] )-> int: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCAmelCase__( self : int )-> Optional[int]: lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[Any] = model_class(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : List[str] = [*signature.parameters.keys()] lowerCAmelCase__ : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[Any] )-> Tuple: lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Dict )-> int: lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Tuple )-> Optional[int]: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Dict = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: lowerCAmelCase__ : Dict = model_class(config=_SCREAMING_SNAKE_CASE ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowerCAmelCase__ : str = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def UpperCAmelCase__( self : List[str] )-> str: for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Tuple = ViTHybridModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _a ( unittest.TestCase): @cached_property def UpperCAmelCase__( self : Union[str, Any] )-> Dict: return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase__( self : List[str] )-> Any: lowerCAmelCase__ : List[Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = self.default_image_processor lowerCAmelCase__ : Optional[int] = prepare_img() lowerCAmelCase__ : Union[str, Any] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowerCAmelCase__ : int = model(**_SCREAMING_SNAKE_CASE ) # verify the logits lowerCAmelCase__ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow @require_accelerate def UpperCAmelCase__( self : str )-> Tuple: lowerCAmelCase__ : Optional[Any] = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) lowerCAmelCase__ : List[str] = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''' ) lowerCAmelCase__ : Union[str, Any] = prepare_img() lowerCAmelCase__ : List[str] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) lowerCAmelCase__ : str = model(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = outputs.logits # model predicts one of the 1000 ImageNet classes lowerCAmelCase__ : Union[str, Any] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''' )
211
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] lowerCamelCase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase = {f'''funnel-transformer/{name}''': 512 for name in _model_names} lowerCamelCase = {f'''funnel-transformer/{name}''': {'''do_lower_case''': True} for name in _model_names} class _a ( _lowercase): _a : Tuple = VOCAB_FILES_NAMES _a : Dict = PRETRAINED_VOCAB_FILES_MAP _a : Dict = PRETRAINED_INIT_CONFIGURATION _a : Union[str, Any] = FunnelTokenizer _a : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : int = 2 def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : str=None , _SCREAMING_SNAKE_CASE : str=None , _SCREAMING_SNAKE_CASE : Any=True , _SCREAMING_SNAKE_CASE : Any="<unk>" , _SCREAMING_SNAKE_CASE : Dict="<sep>" , _SCREAMING_SNAKE_CASE : Optional[int]="<pad>" , _SCREAMING_SNAKE_CASE : str="<cls>" , _SCREAMING_SNAKE_CASE : List[str]="<mask>" , _SCREAMING_SNAKE_CASE : Optional[int]="<s>" , _SCREAMING_SNAKE_CASE : Dict="</s>" , _SCREAMING_SNAKE_CASE : Any=True , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : str="##" , **_SCREAMING_SNAKE_CASE : List[str] , )-> List[str]: super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , clean_text=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , wordpieces_prefix=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get('''strip_accents''' , _SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): lowerCAmelCase__ : int = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop('''type''' ) ) lowerCAmelCase__ : Dict = do_lower_case lowerCAmelCase__ : str = strip_accents lowerCAmelCase__ : Dict = tokenize_chinese_chars lowerCAmelCase__ : str = normalizer_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = do_lower_case def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any]=None )-> Optional[int]: lowerCAmelCase__ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None )-> List[int]: lowerCAmelCase__ : str = [self.sep_token_id] lowerCAmelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[str] = None )-> Tuple[str]: lowerCAmelCase__ : Any = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
211
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class A ( _lowerCAmelCase ): __UpperCAmelCase : Union[str, Any] = "data2vec-vision" def __init__(self : Optional[int] , __UpperCAmelCase : Optional[int]=7_6_8 , __UpperCAmelCase : Tuple=1_2 , __UpperCAmelCase : str=1_2 , __UpperCAmelCase : str=3_0_7_2 , __UpperCAmelCase : str="gelu" , __UpperCAmelCase : List[str]=0.0 , __UpperCAmelCase : str=0.0 , __UpperCAmelCase : Tuple=0.02 , __UpperCAmelCase : Optional[Any]=1E-12 , __UpperCAmelCase : List[Any]=2_2_4 , __UpperCAmelCase : Dict=1_6 , __UpperCAmelCase : int=3 , __UpperCAmelCase : Union[str, Any]=False , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Tuple=[3, 5, 7, 1_1] , __UpperCAmelCase : List[Any]=[1, 2, 3, 6] , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Tuple=0.4 , __UpperCAmelCase : Optional[Any]=2_5_6 , __UpperCAmelCase : str=1 , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Union[str, Any]=2_5_5 , **__UpperCAmelCase : Optional[Any] , ) -> Optional[int]: """simple docstring""" super().__init__(**_lowercase ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = use_mask_token UpperCAmelCase__ = use_absolute_position_embeddings UpperCAmelCase__ = use_relative_position_bias UpperCAmelCase__ = use_shared_relative_position_bias UpperCAmelCase__ = layer_scale_init_value UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = use_mean_pooling # decode head attributes (semantic segmentation) UpperCAmelCase__ = out_indices UpperCAmelCase__ = pool_scales # auxiliary head attributes (semantic segmentation) UpperCAmelCase__ = use_auxiliary_head UpperCAmelCase__ = auxiliary_loss_weight UpperCAmelCase__ = auxiliary_channels UpperCAmelCase__ = auxiliary_num_convs UpperCAmelCase__ = auxiliary_concat_input UpperCAmelCase__ = semantic_loss_ignore_index class A ( _lowerCAmelCase ): __UpperCAmelCase : int = version.parse('1.11' ) @property def lowercase_ (self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase_ (self : Dict ) -> List[Any]: """simple docstring""" return 1E-4
65
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Dict , _lowercase : Union[str, Any] ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __UpperCAmelCase = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowercase ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : List[str] ): __UpperCAmelCase = '''sgugger/tiny-distilbert-classification''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , torchscript=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , fpaa=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : int ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) # set architectures equal to `None` __UpperCAmelCase = None __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Tuple ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowercase , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Any ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tinier_bart''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Union[str, Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : int ): __UpperCAmelCase = '''sshleifer/tinier_bart''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowercase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowercase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowercase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowercase , '''env.csv''' ) , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowercase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''env.csv''' ) ).exists() ) def a ( self : List[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowercase : str ): self.assertTrue(hasattr(_lowercase , '''sequential''' ) ) self.assertTrue(hasattr(_lowercase , '''cumulative''' ) ) self.assertTrue(hasattr(_lowercase , '''current''' ) ) self.assertTrue(hasattr(_lowercase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , '''log.txt''' ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowercase , '''log.txt''' ) ).exists() )
332
0
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __lowerCamelCase ( lowerCamelCase_ , lowerCamelCase_ ): lowerCamelCase_ : List[str] = 1 @register_to_config def __init__( self , lowerCamelCase = 1000 , lowerCamelCase = None ) -> Union[str, Any]: # set `betas`, `alphas`, `timesteps` self.set_timesteps(__snake_case ) # standard deviation of the initial noise distribution snake_case_ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. snake_case_ = 4 # running values snake_case_ = [] def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[Any]: snake_case_ = num_inference_steps snake_case_ = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] snake_case_ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: snake_case_ = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: snake_case_ = torch.sin(steps * math.pi / 2 ) ** 2 snake_case_ = (1.0 - self.betas**2) ** 0.5 snake_case_ = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] snake_case_ = timesteps.to(__snake_case ) snake_case_ = [] def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = True , ) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( """Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler""" ) snake_case_ = (self.timesteps == timestep).nonzero().item() snake_case_ = timestep_index + 1 snake_case_ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__snake_case ) if len(self.ets ) == 1: snake_case_ = self.ets[-1] elif len(self.ets ) == 2: snake_case_ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: snake_case_ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: snake_case_ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) snake_case_ = self._get_prev_sample(__snake_case , __snake_case , __snake_case , __snake_case ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__snake_case ) def lowerCAmelCase_ ( self , lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) -> torch.FloatTensor: return sample def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: snake_case_ = self.alphas[timestep_index] snake_case_ = self.betas[timestep_index] snake_case_ = self.alphas[prev_timestep_index] snake_case_ = self.betas[prev_timestep_index] snake_case_ = (sample - sigma * ets) / max(__snake_case , 1e-8 ) snake_case_ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> Tuple: return self.config.num_train_timesteps
370
from torch import nn def UpperCamelCase( lowercase_ ) -> Tuple: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
34
0
from __future__ import annotations from typing import Generic, TypeVar SCREAMING_SNAKE_CASE :int = TypeVar('''T''') class __lowerCAmelCase ( Generic[T] ): """simple docstring""" def __init__( self : List[str] , _lowerCAmelCase : T ) -> None: """simple docstring""" snake_case_ = data snake_case_ = self snake_case_ = 0 class __lowerCAmelCase ( Generic[T] ): """simple docstring""" def __init__( self : List[str] ) -> None: """simple docstring""" # map from node name to the node object snake_case_ = {} def lowerCAmelCase__ ( self : str , _lowerCAmelCase : T ) -> None: """simple docstring""" # create a new set with x as its member snake_case_ = DisjointSetTreeNode(_lowerCAmelCase ) def lowerCAmelCase__ ( self : Tuple , _lowerCAmelCase : T ) -> DisjointSetTreeNode[T]: """simple docstring""" # find the set x belongs to (with path-compression) snake_case_ = self.map[data] if elem_ref != elem_ref.parent: snake_case_ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def lowerCAmelCase__ ( self : Optional[Any] , _lowerCAmelCase : DisjointSetTreeNode[T] , _lowerCAmelCase : DisjointSetTreeNode[T] ) -> None: """simple docstring""" # helper function for union operation if nodea.rank > nodea.rank: snake_case_ = nodea else: snake_case_ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def lowerCAmelCase__ ( self : Dict , _lowerCAmelCase : T , _lowerCAmelCase : T ) -> None: """simple docstring""" # merge 2 disjoint sets self.link(self.find_set(_lowerCAmelCase ) , self.find_set(_lowerCAmelCase ) ) class __lowerCAmelCase ( Generic[T] ): """simple docstring""" def __init__( self : Optional[Any] ) -> None: """simple docstring""" # connections: map from the node to the neighbouring nodes (with weights) snake_case_ = {} def lowerCAmelCase__ ( self : int , _lowerCAmelCase : T ) -> None: """simple docstring""" # add a node ONLY if its not present in the graph if node not in self.connections: snake_case_ = {} def lowerCAmelCase__ ( self : Optional[Any] , _lowerCAmelCase : T , _lowerCAmelCase : T , _lowerCAmelCase : int ) -> None: """simple docstring""" # add an edge with the given weight self.add_node(_lowerCAmelCase ) self.add_node(_lowerCAmelCase ) snake_case_ = weight snake_case_ = weight def lowerCAmelCase__ ( self : Dict ) -> GraphUndirectedWeighted[T]: """simple docstring""" snake_case_ = [] snake_case_ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda _lowerCAmelCase : x[2] ) # creating the disjoint set snake_case_ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(_lowerCAmelCase ) # MST generation snake_case_ = 0 snake_case_ = 0 snake_case_ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: snake_case_ , snake_case_ , snake_case_ = edges[index] index += 1 snake_case_ = disjoint_set.find_set(_lowerCAmelCase ) snake_case_ = disjoint_set.find_set(_lowerCAmelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) disjoint_set.union(_lowerCAmelCase , _lowerCAmelCase ) return graph
159
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _lowerCAmelCase ( )->Any: '''simple docstring''' snake_case_ = argparse.ArgumentParser() parser.add_argument( "-m" , "--pretrained_model_name_or_path" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , required=lowerCAmelCase_ , help="Path to pretrained model or model identifier from huggingface.co/models." , ) parser.add_argument( "-c" , "--caption" , type=lowerCAmelCase_ , default="robotic cat with wings" , help="Text used to generate images." , ) parser.add_argument( "-n" , "--images_num" , type=lowerCAmelCase_ , default=4 , help="How much images to generate." , ) parser.add_argument( "-s" , "--seed" , type=lowerCAmelCase_ , default=42 , help="Seed for random process." , ) parser.add_argument( "-ci" , "--cuda_id" , type=lowerCAmelCase_ , default=0 , help="cuda_id." , ) snake_case_ = parser.parse_args() return args def _lowerCAmelCase ( lowerCAmelCase_ :Dict , lowerCAmelCase_ :Union[str, Any] , lowerCAmelCase_ :Union[str, Any] )->Union[str, Any]: '''simple docstring''' if not len(lowerCAmelCase_ ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) snake_case_ , snake_case_ = imgs[0].size snake_case_ = Image.new("RGB" , size=(cols * w, rows * h) ) snake_case_ , snake_case_ = grid.size for i, img in enumerate(lowerCAmelCase_ ): grid.paste(lowerCAmelCase_ , box=(i % cols * w, i // cols * h) ) return grid def _lowerCAmelCase ( lowerCAmelCase_ :List[str] , lowerCAmelCase_ :Union[str, Any]="robotic cat with wings" , lowerCAmelCase_ :Any=7.5 , lowerCAmelCase_ :Dict=50 , lowerCAmelCase_ :int=1 , lowerCAmelCase_ :Union[str, Any]=42 , )->str: '''simple docstring''' snake_case_ = torch.Generator(pipeline.device ).manual_seed(lowerCAmelCase_ ) snake_case_ = pipeline( lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , ).images snake_case_ = int(math.sqrt(lowerCAmelCase_ ) ) snake_case_ = image_grid(lowerCAmelCase_ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images SCREAMING_SNAKE_CASE :Dict = parse_args() # Load models and create wrapper for stable diffusion SCREAMING_SNAKE_CASE :Optional[int] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') SCREAMING_SNAKE_CASE :Tuple = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') SCREAMING_SNAKE_CASE :List[str] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') SCREAMING_SNAKE_CASE :Optional[int] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') SCREAMING_SNAKE_CASE :List[Any] = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) SCREAMING_SNAKE_CASE :Dict = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): SCREAMING_SNAKE_CASE :Union[str, Any] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: SCREAMING_SNAKE_CASE :Union[str, Any] = unet.to(torch.device('''cuda''', args.cuda_id)) SCREAMING_SNAKE_CASE :Optional[int] = pipeline.to(unet.device) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :Optional[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) SCREAMING_SNAKE_CASE :Optional[Any] = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
159
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
358
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: __magic_name__ : List[str] = tempfile.mkdtemp() # fmt: off __magic_name__ : Union[str, Any] = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __magic_name__ : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : int = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] __magic_name__ : Any = {"""unk_token""": """<unk>"""} __magic_name__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase__ ) ) __magic_name__ : int = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], """image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __magic_name__ : List[str] = os.path.join(self.tmpdirname , lowerCAmelCase__ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[str]: return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **lowerCAmelCase__ ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Any: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **lowerCAmelCase__ ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[Any]: return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> int: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> int: __magic_name__ : str = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __magic_name__ : Any = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Any = self.get_tokenizer() __magic_name__ : str = self.get_rust_tokenizer() __magic_name__ : Tuple = self.get_image_processor() __magic_name__ : List[str] = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) __magic_name__ : Optional[int] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase__ ) __magic_name__ : int = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) __magic_name__ : List[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : str = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : Any = self.get_image_processor(do_normalize=lowerCAmelCase__ ) __magic_name__ : Tuple = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Dict: __magic_name__ : int = self.get_image_processor() __magic_name__ : int = self.get_tokenizer() __magic_name__ : Union[str, Any] = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __magic_name__ : Dict = self.prepare_image_inputs() __magic_name__ : Any = image_processor(lowerCAmelCase__ , return_tensors="""np""" ) __magic_name__ : str = processor(images=lowerCAmelCase__ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.get_image_processor() __magic_name__ : int = self.get_tokenizer() __magic_name__ : int = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __magic_name__ : Optional[int] = """lower newer""" __magic_name__ : Tuple = processor(text=lowerCAmelCase__ , return_tensors="""np""" ) __magic_name__ : Optional[int] = tokenizer(lowerCAmelCase__ , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Tuple = self.get_image_processor() __magic_name__ : Union[str, Any] = self.get_tokenizer() __magic_name__ : List[str] = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __magic_name__ : Any = """lower newer""" __magic_name__ : Union[str, Any] = self.prepare_image_inputs() __magic_name__ : int = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Dict = """google/owlvit-base-patch32""" __magic_name__ : int = OwlViTProcessor.from_pretrained(lowerCAmelCase__ ) __magic_name__ : List[Any] = ["""cat""", """nasa badge"""] __magic_name__ : Any = processor(text=lowerCAmelCase__ ) __magic_name__ : Dict = 16 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[str] = """google/owlvit-base-patch32""" __magic_name__ : Optional[Any] = OwlViTProcessor.from_pretrained(lowerCAmelCase__ ) __magic_name__ : Tuple = [["""cat""", """nasa badge"""], ["""person"""]] __magic_name__ : Tuple = processor(text=lowerCAmelCase__ ) __magic_name__ : str = 16 __magic_name__ : str = len(lowerCAmelCase__ ) __magic_name__ : int = max([len(lowerCAmelCase__ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__ ( self ) -> Any: __magic_name__ : Optional[int] = """google/owlvit-base-patch32""" __magic_name__ : Any = OwlViTProcessor.from_pretrained(lowerCAmelCase__ ) __magic_name__ : str = ["""cat""", """nasa badge"""] __magic_name__ : List[str] = processor(text=lowerCAmelCase__ ) __magic_name__ : List[Any] = 16 __magic_name__ : Any = inputs["""input_ids"""] __magic_name__ : Optional[Any] = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : List[str] = self.get_image_processor() __magic_name__ : Dict = self.get_tokenizer() __magic_name__ : Tuple = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __magic_name__ : Tuple = self.prepare_image_inputs() __magic_name__ : List[Any] = self.prepare_image_inputs() __magic_name__ : List[str] = processor(images=lowerCAmelCase__ , query_images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__ ( self ) -> Any: __magic_name__ : Optional[Any] = self.get_image_processor() __magic_name__ : List[Any] = self.get_tokenizer() __magic_name__ : Tuple = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ : Optional[Any] = processor.batch_decode(lowerCAmelCase__ ) __magic_name__ : Optional[int] = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
138
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm __a = logging.get_logger(__name__) @dataclass class lowercase__( UpperCAmelCase ): """simple docstring""" a :Optional[Any] = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : int , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Optional[int]: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase_ = deprecated_arg[3:] setattr(self , SCREAMING_SNAKE_CASE_ , not kwargs.pop(SCREAMING_SNAKE_CASE_ ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) lowercase_ = kwargs.pop('''torchscript''' , self.torchscript ) lowercase_ = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) lowercase_ = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**SCREAMING_SNAKE_CASE_ ) a :bool = field(default=UpperCAmelCase , metadata={'help': 'Trace the models using torchscript'} ) a :bool = field(default=UpperCAmelCase , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) a :str = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def _lowercase ( self : Any ) -> Tuple["torch.device", int]: requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: lowercase_ = torch.device('''cpu''' ) lowercase_ = 0 elif is_torch_tpu_available(): lowercase_ = xm.xla_device() lowercase_ = 0 else: lowercase_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) lowercase_ = torch.cuda.device_count() return device, n_gpu @property def _lowercase ( self : List[Any] ) -> Union[str, Any]: return is_torch_tpu_available() and self.tpu @property def _lowercase ( self : List[Any] ) -> int: requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def _lowercase ( self : List[Any] ) -> "torch.device": requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def _lowercase ( self : Any ) -> int: requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def _lowercase ( self : Optional[Any] ) -> Dict: return self.n_gpu > 0
30
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = SpeechTaTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def __lowerCamelCase ( self : Dict): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowercase =SpeechTaTokenizer(_lowerCAmelCase) __lowercase =AddedToken('<mask>' , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase) __lowercase =mask_token tokenizer.add_special_tokens({'mask_token': mask_token}) tokenizer.add_tokens(['<ctc_blank>']) tokenizer.save_pretrained(self.tmpdirname) def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : Optional[int]): '''simple docstring''' __lowercase ='this is a test' __lowercase ='this is a test' return input_text, output_text def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : Dict=2_0 , _lowerCAmelCase : Tuple=5): '''simple docstring''' __lowercase , __lowercase =self.get_input_output_texts(_lowerCAmelCase) __lowercase =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) __lowercase =tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase) return text, ids def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase ='<pad>' __lowercase =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase) , _lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase) , _lowerCAmelCase) def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-4] , 'œ') self.assertEqual(vocab_keys[-2] , '<mask>') self.assertEqual(vocab_keys[-1] , '<ctc_blank>') self.assertEqual(len(_lowerCAmelCase) , 8_1) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 7_9) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =self.get_tokenizers(do_lower_case=_lowerCAmelCase) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}"""): __lowercase =tokenizer.vocab_size __lowercase =len(_lowerCAmelCase) self.assertNotEqual(_lowerCAmelCase , 0) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __lowercase =['aaaaa bbbbbb', 'cccccccccdddddddd'] __lowercase =tokenizer.add_tokens(_lowerCAmelCase) __lowercase =tokenizer.vocab_size __lowercase =len(_lowerCAmelCase) self.assertNotEqual(_lowerCAmelCase , 0) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase) self.assertEqual(_lowerCAmelCase , len(_lowerCAmelCase)) self.assertEqual(_lowerCAmelCase , all_size + len(_lowerCAmelCase)) __lowercase =tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_lowerCAmelCase) self.assertGreaterEqual(len(_lowerCAmelCase) , 4) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) __lowercase ={'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} __lowercase =tokenizer.add_special_tokens(_lowerCAmelCase) __lowercase =tokenizer.vocab_size __lowercase =len(_lowerCAmelCase) self.assertNotEqual(_lowerCAmelCase , 0) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase) self.assertEqual(_lowerCAmelCase , len(_lowerCAmelCase)) self.assertEqual(_lowerCAmelCase , all_size_a + len(_lowerCAmelCase)) __lowercase =tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_lowerCAmelCase) self.assertGreaterEqual(len(_lowerCAmelCase) , 6) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[0] , tokens[1]) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokens[-4]) self.assertEqual(tokens[0] , tokenizer.eos_token_id) self.assertEqual(tokens[-3] , tokenizer.pad_token_id) def __lowerCamelCase ( self : List[str]): '''simple docstring''' pass def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' pass def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =self.get_tokenizer() __lowercase =tokenizer.tokenize('This is a test') # fmt: off self.assertListEqual(_lowerCAmelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't']) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase) , [4, 3_2, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 7, 4, 6, 5, 1_2, 6] , ) __lowercase =tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( _lowerCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.']) __lowercase =tokenizer.convert_tokens_to_ids(_lowerCAmelCase) # fmt: off self.assertListEqual(_lowerCAmelCase , [4, 3_0, 4, 2_0, 7, 1_2, 4, 2_5, 8, 1_3, 9, 4, 1_0, 9, 4, 3, 2_3, 4, 7, 9, 1_4, 4, 6, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 1_9, 7, 1_5, 1_2, 7_3, 2_6]) # fmt: on __lowercase =tokenizer.convert_ids_to_tokens(_lowerCAmelCase) self.assertListEqual( _lowerCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.']) @slow def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =[ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off __lowercase ={ 'input_ids': [ [4, 3_2, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 6_4, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_5, 2_2, 4, 2_8, 9, 8, 2_0, 9, 4, 7, 1_2, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 6, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 7, 9, 1_4, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 3_9, 2_5, 5, 1_3, 6, 6_3, 4, 2_4, 1_3, 8, 2_7, 1_0, 1_4, 5, 1_2, 4, 2_1, 5, 9, 5, 1_3, 7, 1_5, 3_9, 2_4, 1_6, 1_3, 2_4, 8, 1_2, 5, 4, 7, 1_3, 1_7, 1_1, 1_0, 6, 5, 1_7, 6, 1_6, 1_3, 5, 1_2, 4, 6_4, 4_0, 4_7, 5_4, 3_2, 2_3, 4, 5_3, 4_9, 3_2, 2_3, 4, 5_4, 8, 4_0, 4_7, 5_4, 3_2, 7, 2_3, 4, 6_9, 5_2, 4_3, 2_3, 4, 5_1, 1_0, 1_2, 6, 1_0, 1_5, 4_0, 5, 1_3, 6, 2_3, 4, 6_9, 5_2, 4_8, 5, 6, 2_6, 2_6, 2_6, 6_3, 4, 1_9, 8, 1_3, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 6_1, 9, 1_4, 5, 1_3, 1_2, 6, 7, 9, 1_4, 1_0, 9, 2_1, 4, 6_4, 4_8, 5_2, 6_1, 6_3, 4, 7, 9, 1_4, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 5_3, 5, 9, 5, 1_3, 7, 6, 1_0, 8, 9, 4, 6_4, 4_8, 5_2, 5_3, 6_3, 4, 2_0, 1_0, 6, 1_1, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 1_0, 1_3, 6, 2_2, 3_9, 6, 2_0, 8, 4, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 4, 1_8, 8, 1_4, 5, 1_5, 1_2, 4, 1_0, 9, 4, 8, 9, 5, 4, 1_1, 1_6, 9, 1_4, 1_3, 5, 1_4, 4, 2_4, 1_5, 1_6, 1_2, 4, 1_5, 7, 9, 2_1, 1_6, 7, 2_1, 5, 1_2, 4, 7, 9, 1_4, 4, 1_4, 5, 5, 2_4, 4, 1_0, 9, 6, 5, 1_3, 8, 2_4, 5, 1_3, 7, 2_5, 1_0, 1_5, 1_0, 6, 2_2, 4, 2_5, 5, 6, 2_0, 5, 5, 9, 4, 5_8, 7, 3_7, 2_3, 4, 4_9, 2_2, 3_2, 8, 1_3, 1_7, 1_1, 4, 7, 9, 1_4, 4, 3_2, 5, 9, 1_2, 8, 1_3, 5_5, 1_5, 8, 2_0, 2_6, 2], [4, 4_0, 4_7, 5_4, 3_2, 4, 1_0, 1_2, 4, 1_4, 5, 1_2, 1_0, 2_1, 9, 5, 1_4, 4, 6, 8, 4, 2_4, 1_3, 5, 3_9, 6, 1_3, 7, 1_0, 9, 4, 1_4, 5, 5, 2_4, 4, 2_5, 1_0, 1_4, 1_0, 1_3, 5, 1_7, 6, 1_0, 8, 9, 7, 1_5, 4, 1_3, 5, 2_4, 1_3, 5, 1_2, 5, 9, 6, 7, 6, 1_0, 8, 9, 1_2, 4, 1_9, 1_3, 8, 1_8, 4, 1_6, 9, 1_5, 7, 2_5, 5, 1_5, 5, 1_4, 4, 6, 5, 3_7, 6, 4, 2_5, 2_2, 4, 4_6, 8, 1_0, 9, 6, 1_5, 2_2, 4, 1_7, 8, 9, 1_4, 1_0, 6, 1_0, 8, 9, 1_0, 9, 2_1, 4, 8, 9, 4, 2_5, 8, 6, 1_1, 4, 1_5, 5, 1_9, 6, 4, 7, 9, 1_4, 4, 1_3, 1_0, 2_1, 1_1, 6, 4, 1_7, 8, 9, 6, 5, 3_7, 6, 4, 1_0, 9, 4, 7, 1_5, 1_5, 4, 1_5, 7, 2_2, 5, 1_3, 1_2, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 3_2, 1_1, 5, 4, 4_5, 1_6, 1_0, 1_7, 2_8, 4, 2_5, 1_3, 8, 2_0, 9, 4, 1_9, 8, 3_7, 4, 4_6, 1_6, 1_8, 2_4, 1_2, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 5, 4, 1_5, 7, 5_7, 2_2, 4, 1_4, 8, 2_1, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=_lowerCAmelCase , )
166
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int ) -> str: if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) UpperCAmelCase_ = str(bin(__UpperCamelCase ) ) binary_number += "0" * shift_amount return binary_number def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int ) -> str: if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) UpperCAmelCase_ = str(bin(__UpperCamelCase ) )[2:] if shift_amount >= len(__UpperCamelCase ): return "0b0" UpperCAmelCase_ = binary_number[: len(__UpperCamelCase ) - shift_amount] return "0b" + shifted_binary_number def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int ) -> str: if number >= 0: # Get binary representation of positive number UpperCAmelCase_ = '''0''' + str(bin(__UpperCamelCase ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number UpperCAmelCase_ = len(bin(__UpperCamelCase )[3:] ) # Find 2's complement of number UpperCAmelCase_ = bin(abs(__UpperCamelCase ) - (1 << binary_number_length) )[3:] UpperCAmelCase_ = ( '''1''' + '''0''' * (binary_number_length - len(__UpperCamelCase )) + binary_number ) if shift_amount >= len(__UpperCamelCase ): return "0b" + binary_number[0] * len(__UpperCamelCase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__UpperCamelCase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
370
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Dict: # initialize config if "resnet-50" in model_name: UpperCAmelCase_ = ResNetConfig.from_pretrained('''microsoft/resnet-50''' ) elif "resnet-101" in model_name: UpperCAmelCase_ = ResNetConfig.from_pretrained('''microsoft/resnet-101''' ) else: raise ValueError('''Model name should include either resnet50 or resnet101''' ) UpperCAmelCase_ = DetrConfig(use_timm_backbone=__UpperCamelCase , backbone_config=__UpperCamelCase ) # set label attributes UpperCAmelCase_ = '''panoptic''' in model_name if is_panoptic: UpperCAmelCase_ = 250 else: UpperCAmelCase_ = 91 UpperCAmelCase_ = '''huggingface/label-files''' UpperCAmelCase_ = '''coco-detection-id2label.json''' UpperCAmelCase_ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Union[str, Any]: # here we list all keys to be renamed (original name on the left, our name on the right) UpperCAmelCase_ = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') ) rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') ) rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') ) rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') ) rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : List[Any]=False ) -> Dict: UpperCAmelCase_ = '''''' if is_panoptic: UpperCAmelCase_ = '''detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:256, :] UpperCAmelCase_ = in_proj_bias[:256] UpperCAmelCase_ = in_proj_weight[256:512, :] UpperCAmelCase_ = in_proj_bias[256:512] UpperCAmelCase_ = in_proj_weight[-256:, :] UpperCAmelCase_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:256, :] UpperCAmelCase_ = in_proj_bias[:256] UpperCAmelCase_ = in_proj_weight[256:512, :] UpperCAmelCase_ = in_proj_bias[256:512] UpperCAmelCase_ = in_proj_weight[-256:, :] UpperCAmelCase_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase_ = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase_ = in_proj_weight_cross_attn[:256, :] UpperCAmelCase_ = in_proj_bias_cross_attn[:256] UpperCAmelCase_ = in_proj_weight_cross_attn[256:512, :] UpperCAmelCase_ = in_proj_bias_cross_attn[256:512] UpperCAmelCase_ = in_proj_weight_cross_attn[-256:, :] UpperCAmelCase_ = in_proj_bias_cross_attn[-256:] def SCREAMING_SNAKE_CASE ( ) -> int: UpperCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Any=None , __UpperCamelCase : Optional[Any]=False ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ = get_detr_config(__UpperCamelCase ) # load original model from torch hub UpperCAmelCase_ = { '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(f'Converting model {model_name}...' ) UpperCAmelCase_ = torch.hub.load('''facebookresearch/detr''' , model_name_to_original_name[model_name] , pretrained=__UpperCamelCase ).eval() UpperCAmelCase_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(__UpperCamelCase ): if is_panoptic: UpperCAmelCase_ = '''detr.''' + src rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__UpperCamelCase , is_panoptic=__UpperCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ = '''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val # finally, create HuggingFace model and load state dict UpperCAmelCase_ = DetrForSegmentation(__UpperCamelCase ) if is_panoptic else DetrForObjectDetection(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # verify our conversion on an image UpperCAmelCase_ = '''coco_panoptic''' if is_panoptic else '''coco_detection''' UpperCAmelCase_ = DetrImageProcessor(format=__UpperCamelCase ) UpperCAmelCase_ = processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase_ = encoding['''pixel_values'''] UpperCAmelCase_ = detr(__UpperCamelCase ) UpperCAmelCase_ = model(__UpperCamelCase ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info('''Uploading PyTorch model and image processor to the hub...''' ) model.push_to_hub(f'nielsr/{model_name}' ) processor.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') _lowerCamelCase = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
177
0
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class __A ( enum.Enum ): '''simple docstring''' __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : Any = 1 __lowerCamelCase : List[Any] = 2 @add_end_docstrings(A ) class __A ( A ): '''simple docstring''' __lowerCamelCase : Dict = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__(self , *A , **A ) -> Tuple: """simple docstring""" super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _a = None if self.model.config.prefix is not None: _a = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _a = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _a , _a , _a = self._sanitize_parameters(prefix=A , **self._forward_params ) _a = {**self._preprocess_params, **preprocess_params} _a = {**self._forward_params, **forward_params} def a__ (self , A=None , A=None , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> str: """simple docstring""" _a = {} if prefix is not None: _a = prefix if prefix: _a = self.tokenizer( A , padding=A , add_special_tokens=A , return_tensors=self.framework ) _a = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ''' [None, \'hole\']''' ) _a = handle_long_generation preprocess_params.update(A ) _a = generate_kwargs _a = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) _a = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) _a = ReturnType.TENSORS if return_type is not None: _a = return_type if clean_up_tokenization_spaces is not None: _a = clean_up_tokenization_spaces if stop_sequence is not None: _a = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) _a = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def a__ (self , *A , **A ) -> List[Any]: """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*A , **A ) def __call__(self , A , **A ) -> int: """simple docstring""" return super().__call__(A , **A ) def a__ (self , A , A="" , A=None , **A ) -> Any: """simple docstring""" _a = self.tokenizer( prefix + prompt_text , padding=A , add_special_tokens=A , return_tensors=self.framework ) _a = prompt_text if handle_long_generation == "hole": _a = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: _a = generate_kwargs['''max_new_tokens'''] else: _a = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _a = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) _a = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: _a = inputs['''attention_mask'''][:, -keep_length:] return inputs def a__ (self , A , **A ) -> Any: """simple docstring""" _a = model_inputs['''input_ids'''] _a = model_inputs.get('''attention_mask''' , A ) # Allow empty prompts if input_ids.shape[1] == 0: _a = None _a = None _a = 1 else: _a = input_ids.shape[0] _a = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _a = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: _a = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: _a = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _a = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _a = self.model.generate(input_ids=A , attention_mask=A , **A ) _a = generated_sequence.shape[0] if self.framework == "pt": _a = generated_sequence.reshape(A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _a = tf.reshape(A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def a__ (self , A , A=ReturnType.FULL_TEXT , A=True ) -> str: """simple docstring""" _a = model_outputs['''generated_sequence'''][0] _a = model_outputs['''input_ids'''] _a = model_outputs['''prompt_text'''] _a = generated_sequence.numpy().tolist() _a = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _a = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _a = self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _a = 0 else: _a = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) ) if return_type == ReturnType.FULL_TEXT: _a = prompt_text + text[prompt_length:] else: _a = text[prompt_length:] _a = {'''generated_text''': all_text} records.append(A ) return records
211
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } lowercase_ = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase (__A , __A , __A , __A , __A , __A): """simple docstring""" for attribute in key.split('''.'''): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _a = '''lm_head''' _a = getattr(__A , __A) if weight_type is not None: _a = getattr(__A , __A).shape else: _a = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value else: _a = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''') def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a = [] _a = fairseq_model.state_dict() _a = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _a = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == '''group''' , ) _a = True else: for key, mapped_key in MAPPING.items(): _a = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''')[-1] == name.split('''.''')[0]: _a = True if "*" in mapped_key: _a = name.split(__A)[0].split('''.''')[-2] _a = mapped_key.replace('''*''' , __A) if "weight_g" in name: _a = '''weight_g''' elif "weight_v" in name: _a = '''weight_v''' elif "bias" in name: _a = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _a = '''weight''' else: _a = None set_recursively(__A , __A , __A , __A , __A , __A) continue if not is_used: unused_weights.append(__A) logger.warning(F'''Unused weights: {unused_weights}''') def lowerCAmelCase (__A , __A , __A , __A , __A): """simple docstring""" _a = full_name.split('''conv_layers.''')[-1] _a = name.split('''.''') _a = int(items[0]) _a = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') else: unused_weights.append(__A) @torch.no_grad() def lowerCAmelCase (__A , __A , __A=None , __A=None , __A=True): """simple docstring""" if config_path is not None: _a = UniSpeechConfig.from_pretrained(__A) else: _a = UniSpeechConfig() if is_finetuned: if dict_path: _a = Dictionary.load_from_json(__A) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _a = target_dict.pad_index _a = target_dict.bos_index _a = target_dict.eos_index _a = len(target_dict.symbols) _a = os.path.join(__A , '''vocab.json''') if not os.path.isdir(__A): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__A)) return os.makedirs(__A , exist_ok=__A) _a = target_dict.indices # fairseq has the <pad> and <s> switched _a = 42 _a = 43 with open(__A , '''w''' , encoding='''utf-8''') as vocab_handle: json.dump(__A , __A) _a = WavaVecaPhonemeCTCTokenizer( __A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__A , ) _a = True if config.feat_extract_norm == '''layer''' else False _a = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) _a = WavaVecaProcessor(feature_extractor=__A , tokenizer=__A) processor.save_pretrained(__A) _a = UniSpeechForCTC(__A) else: _a = UniSpeechForPreTraining(__A) if is_finetuned: _a , _a , _a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''')[:-1]), '''w2v_path''': checkpoint_path}) else: _a , _a , _a = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) _a = model[0].eval() recursively_load_weights(__A , __A , __A) hf_unispeech.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowercase_ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
211
1
"""simple docstring""" UpperCAmelCase_ : Optional[Any] = { 'joule': 1.0, 'kilojoule': 1000, 'megajoule': 100_0000, 'gigajoule': 10_0000_0000, 'wattsecond': 1.0, 'watthour': 3600, 'kilowatthour': 360_0000, 'newtonmeter': 1.0, 'calorie_nutr': 4_1_8_6.8, 'kilocalorie_nutr': 418_6800.00, 'electronvolt': 1.602176634e-19, 'britishthermalunit_it': 1_0_5_5.0_5_5_8_5, 'footpound': 1.3_5_5_8_1_8, } def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : List[Any] , __A : Optional[int] ) -> float: """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: a_ : List[Any] = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {", ".join(__lowerCAmelCase )}""" ) raise ValueError(__lowerCAmelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
350
def SCREAMING_SNAKE_CASE_ ( __A : list ) -> bool: """simple docstring""" if not isinstance(__A , __A ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(__A ) == 0: raise ValueError('Input list must be a non empty list' ) if len(__A ) == 1: return True a_ : Tuple = series[1] - series[0] for index in range(len(__A ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def SCREAMING_SNAKE_CASE_ ( __A : list ) -> float: """simple docstring""" if not isinstance(__A , __A ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(__A ) == 0: raise ValueError('Input list must be a non empty list' ) a_ : str = 0 for val in series: answer += val return answer / len(__A ) if __name__ == "__main__": import doctest doctest.testmod()
120
0
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : Tuple ="ssube/stable-diffusion-x4-upscaler-onnx" def lowercase__ ( self , snake_case__=0 ): """simple docstring""" lowerCAmelCase : Optional[int] = floats_tensor((1, 3, 128, 128) , rng=random.Random(snake_case__ ) ) lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_dummy_inputs() lowerCAmelCase : Optional[Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) lowerCAmelCase : Tuple = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCAmelCase : List[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_dummy_inputs() lowerCAmelCase : Any = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase : str = np.array( [0.6898892, 0.59240556, 0.52499527, 0.58866215, 0.52258235, 0.52572715, 0.62414473, 0.6174387, 0.6214964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCAmelCase : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_dummy_inputs() lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase : Tuple = np.array( [0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCAmelCase : int = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[int] = self.get_dummy_inputs() lowerCAmelCase : List[str] = pipe(**snake_case__ ).images lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase : Union[str, Any] = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCAmelCase : List[str] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs() lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase : int = np.array( [0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @property def lowercase__ ( self ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = ort.SessionOptions() lowerCAmelCase : Tuple = False return options def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowerCAmelCase : Optional[int] = init_image.resize((128, 128) ) # using the PNDM scheduler by default lowerCAmelCase : str = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : List[str] = "A fantasy landscape, trending on artstation" lowerCAmelCase : str = torch.manual_seed(0 ) lowerCAmelCase : Any = pipe( prompt=snake_case__ , image=snake_case__ , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case__ , output_type="np" , ) lowerCAmelCase : Tuple = output.images lowerCAmelCase : Any = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) lowerCAmelCase : str = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowerCAmelCase : Tuple = init_image.resize((128, 128) ) lowerCAmelCase : Dict = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , subfolder="scheduler" ) lowerCAmelCase : str = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , scheduler=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = "A fantasy landscape, trending on artstation" lowerCAmelCase : int = torch.manual_seed(0 ) lowerCAmelCase : Union[str, Any] = pipe( prompt=snake_case__ , image=snake_case__ , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case__ , output_type="np" , ) lowerCAmelCase : Any = output.images lowerCAmelCase : Union[str, Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) lowerCAmelCase : List[str] = np.array( [0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
108
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() A =logging.get_logger(__name__) def snake_case_ (_a : List[str] ): UpperCAmelCase = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: UpperCAmelCase = 1_2_8 elif "12-12" in model_name: UpperCAmelCase = 1_2 UpperCAmelCase = 1_2 elif "14-14" in model_name: UpperCAmelCase = 1_4 UpperCAmelCase = 1_4 elif "16-16" in model_name: UpperCAmelCase = 1_6 UpperCAmelCase = 1_6 else: raise ValueError('''Model not supported''' ) UpperCAmelCase = '''huggingface/label-files''' if "speech-commands" in model_name: UpperCAmelCase = 3_5 UpperCAmelCase = '''speech-commands-v2-id2label.json''' else: UpperCAmelCase = 5_2_7 UpperCAmelCase = '''audioset-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def snake_case_ (_a : Tuple ): if "module.v" in name: UpperCAmelCase = name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: UpperCAmelCase = name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: UpperCAmelCase = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: UpperCAmelCase = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: UpperCAmelCase = name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def snake_case_ (_a : Dict , _a : List[Any] ): for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(_a ) if "qkv" in key: UpperCAmelCase = key.split('''.''' ) UpperCAmelCase = int(key_split[3] ) UpperCAmelCase = config.hidden_size if "weight" in key: UpperCAmelCase = val[:dim, :] UpperCAmelCase = val[dim : dim * 2, :] UpperCAmelCase = val[-dim:, :] else: UpperCAmelCase = val[:dim] UpperCAmelCase = val[dim : dim * 2] UpperCAmelCase = val[-dim:] else: UpperCAmelCase = val return orig_state_dict def snake_case_ (_a : Tuple ): UpperCAmelCase = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(_a , _a ) @torch.no_grad() def snake_case_ (_a : int , _a : Union[str, Any] , _a : Dict=False ): UpperCAmelCase = get_audio_spectrogram_transformer_config(_a ) UpperCAmelCase = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict UpperCAmelCase = model_name_to_url[model_name] UpperCAmelCase = torch.hub.load_state_dict_from_url(_a , map_location='''cpu''' ) # remove some keys remove_keys(_a ) # rename some keys UpperCAmelCase = convert_state_dict(_a , _a ) # load 🤗 model UpperCAmelCase = ASTForAudioClassification(_a ) model.eval() model.load_state_dict(_a ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 UpperCAmelCase = -4.267_7393 if '''speech-commands''' not in model_name else -6.84_5978 UpperCAmelCase = 4.568_9974 if '''speech-commands''' not in model_name else 5.565_4526 UpperCAmelCase = 1_0_2_4 if '''speech-commands''' not in model_name else 1_2_8 UpperCAmelCase = ASTFeatureExtractor(mean=_a , std=_a , max_length=_a ) if "speech-commands" in model_name: UpperCAmelCase = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) UpperCAmelCase = dataset[0]['''audio''']['''array'''] else: UpperCAmelCase = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) UpperCAmelCase , UpperCAmelCase = torchaudio.load(_a ) UpperCAmelCase = waveform.squeeze().numpy() UpperCAmelCase = feature_extractor(_a , sampling_rate=1_6_0_0_0 , return_tensors='''pt''' ) # forward pass UpperCAmelCase = model(**_a ) UpperCAmelCase = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": UpperCAmelCase = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": UpperCAmelCase = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": UpperCAmelCase = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": UpperCAmelCase = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": UpperCAmelCase = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": UpperCAmelCase = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": UpperCAmelCase = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": UpperCAmelCase = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , _a , atol=1E-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(_a ).mkdir(exist_ok=_a ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_a ) print(F"Saving feature extractor to {pytorch_dump_folder_path}" ) feature_extractor.save_pretrained(_a ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(F"MIT/{model_name}" ) feature_extractor.push_to_hub(F"MIT/{model_name}" ) if __name__ == "__main__": A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A =parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
34
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase = {"""configuration_ibert""": ["""IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """IBertConfig""", """IBertOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """IBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """IBertForMaskedLM""", """IBertForMultipleChoice""", """IBertForQuestionAnswering""", """IBertForSequenceClassification""", """IBertForTokenClassification""", """IBertModel""", """IBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
192
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _UpperCAmelCase = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def UpperCamelCase ( __lowercase : str ,__lowercase : Dict=None ): '''simple docstring''' require_version(deps[pkg] ,__lowercase )
192
1
from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=lowerCAmelCase): SCREAMING_SNAKE_CASE__ = ['''flax''', '''transformers'''] def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax''', '''transformers'''] ) class lowerCamelCase__ ( metaclass=lowerCAmelCase): SCREAMING_SNAKE_CASE__ = ['''flax''', '''transformers'''] def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax''', '''transformers'''] ) class lowerCamelCase__ ( metaclass=lowerCAmelCase): SCREAMING_SNAKE_CASE__ = ['''flax''', '''transformers'''] def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> str: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> str: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(cls , ['''flax''', '''transformers'''] ) class lowerCamelCase__ ( metaclass=lowerCAmelCase): SCREAMING_SNAKE_CASE__ = ['''flax''', '''transformers'''] def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(cls , ['''flax''', '''transformers'''] )
5
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> np.ndarray: '''simple docstring''' lowerCAmelCase : Dict = cva.getAffineTransform(_UpperCAmelCase, _UpperCAmelCase ) return cva.warpAffine(_UpperCAmelCase, _UpperCAmelCase, (rows, cols) ) if __name__ == "__main__": # read original image __A : List[str] = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value __A : int = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __A , __A : Optional[Any] = gray_img.shape # set different points to rotate image __A : int = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __A : Any = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __A : Optional[int] = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __A : List[Any] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __A : List[str] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __A : Union[str, Any] = plt.figure(1) __A : Optional[Any] = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
138
0
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def __snake_case( *_lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase=True , _lowerCAmelCase=2 ) -> Any: from .. import __version__ snake_case__ : Union[str, Any] = take_from snake_case__ : Union[str, Any] = () if not isinstance(args[0] , lowercase_ ): snake_case__ : Any = (args,) for attribute, version_name, message in args: if version.parse(version.parse(lowercase_ ).base_version ) >= version.parse(lowercase_ ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) snake_case__ : Dict = None if isinstance(lowercase_ , lowercase_ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(lowercase_ ),) snake_case__ : Optional[int] = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(lowercase_ , lowercase_ ): values += (getattr(lowercase_ , lowercase_ ),) snake_case__ : Dict = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: snake_case__ : Optional[int] = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: snake_case__ : Optional[Any] = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , lowercase_ , stacklevel=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) > 0: snake_case__ : Any = inspect.getouterframes(inspect.currentframe() )[1] snake_case__ : int = call_frame.filename snake_case__ : Dict = call_frame.lineno snake_case__ : List[Any] = call_frame.function snake_case__ , snake_case__ : Dict = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(lowercase_ ) == 0: return elif len(lowercase_ ) == 1: return values[0] return values
356
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class UpperCAmelCase_ : """simple docstring""" def __init__( self : Dict ): snake_case__ : List[str] = {} def lowerCamelCase ( self : List[Any] , snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : Tuple=1 ): if self.graph.get(snake_case_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: snake_case__ : Tuple = [[w, v]] if not self.graph.get(snake_case_ ): snake_case__ : Optional[Any] = [] def lowerCamelCase ( self : List[str] ): return list(self.graph ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Dict ): if self.graph.get(snake_case_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(snake_case_ ) def lowerCamelCase ( self : Optional[int] , snake_case_ : Tuple=-2 , snake_case_ : Tuple=-1 ): if s == d: return [] snake_case__ : Optional[Any] = [] snake_case__ : List[Any] = [] if s == -2: snake_case__ : Union[str, Any] = list(self.graph )[0] stack.append(snake_case_ ) visited.append(snake_case_ ) snake_case__ : Optional[int] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case__ : str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(snake_case_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case__ : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(snake_case_ ) != 0: snake_case__ : Tuple = stack[len(snake_case_ ) - 1] else: snake_case__ : Tuple = ss # check if se have reached the starting point if len(snake_case_ ) == 0: return visited def lowerCamelCase ( self : Optional[Any] , snake_case_ : Any=-1 ): if c == -1: snake_case__ : Union[str, Any] = floor(random() * 10_000 ) + 10 for i in range(snake_case_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case__ : str = floor(random() * c ) + 1 if n != i: self.add_pair(snake_case_ , snake_case_ , 1 ) def lowerCamelCase ( self : List[Any] , snake_case_ : str=-2 ): snake_case__ : Tuple = deque() snake_case__ : str = [] if s == -2: snake_case__ : str = list(self.graph )[0] d.append(snake_case_ ) visited.append(snake_case_ ) while d: snake_case__ : Dict = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCamelCase ( self : Union[str, Any] , snake_case_ : Optional[Any] ): snake_case__ : Optional[int] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowerCamelCase ( self : Optional[Any] , snake_case_ : Any ): return len(self.graph[u] ) def lowerCamelCase ( self : List[str] , snake_case_ : Union[str, Any]=-2 ): snake_case__ : str = [] snake_case__ : Any = [] if s == -2: snake_case__ : Any = list(self.graph )[0] stack.append(snake_case_ ) visited.append(snake_case_ ) snake_case__ : Dict = s snake_case__ : List[Any] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case__ : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case__ : List[str] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(snake_case_ ) != 0: snake_case__ : Optional[int] = stack[len(snake_case_ ) - 1] else: snake_case__ : Union[str, Any] = ss # check if se have reached the starting point if len(snake_case_ ) == 0: return sorted_nodes def lowerCamelCase ( self : int ): snake_case__ : List[str] = [] snake_case__ : Union[str, Any] = [] snake_case__ : Optional[int] = list(self.graph )[0] stack.append(snake_case_ ) visited.append(snake_case_ ) snake_case__ : List[Any] = -2 snake_case__ : Union[str, Any] = [] snake_case__ : Optional[Any] = s snake_case__ : Optional[Any] = False snake_case__ : Any = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case__ : Tuple = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case__ : str = len(snake_case_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case__ : Dict = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case__ : List[str] = True if len(snake_case_ ) != 0: snake_case__ : Any = stack[len(snake_case_ ) - 1] else: snake_case__ : Optional[Any] = False indirect_parents.append(snake_case_ ) snake_case__ : Union[str, Any] = s snake_case__ : str = ss # check if se have reached the starting point if len(snake_case_ ) == 0: return list(snake_case_ ) def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : List[str] = [] snake_case__ : str = [] snake_case__ : Tuple = list(self.graph )[0] stack.append(snake_case_ ) visited.append(snake_case_ ) snake_case__ : Optional[int] = -2 snake_case__ : List[str] = [] snake_case__ : Optional[int] = s snake_case__ : str = False snake_case__ : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case__ : str = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case__ : Optional[Any] = len(snake_case_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case__ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case__ : List[str] = True if len(snake_case_ ) != 0: snake_case__ : List[str] = stack[len(snake_case_ ) - 1] else: snake_case__ : int = False indirect_parents.append(snake_case_ ) snake_case__ : Any = s snake_case__ : Tuple = ss # check if se have reached the starting point if len(snake_case_ ) == 0: return False def lowerCamelCase ( self : int , snake_case_ : List[Any]=-2 , snake_case_ : List[str]=-1 ): snake_case__ : List[Any] = time() self.dfs(snake_case_ , snake_case_ ) snake_case__ : Optional[Any] = time() return end - begin def lowerCamelCase ( self : int , snake_case_ : List[str]=-2 ): snake_case__ : Any = time() self.bfs(snake_case_ ) snake_case__ : List[str] = time() return end - begin class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[str] ): snake_case__ : List[str] = {} def lowerCamelCase ( self : Union[str, Any] , snake_case_ : str , snake_case_ : int , snake_case_ : Union[str, Any]=1 ): # check if the u exists if self.graph.get(snake_case_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist snake_case__ : Dict = [[w, v]] # add the other way if self.graph.get(snake_case_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist snake_case__ : Any = [[w, u]] def lowerCamelCase ( self : int , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] ): if self.graph.get(snake_case_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(snake_case_ ) # the other way round if self.graph.get(snake_case_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(snake_case_ ) def lowerCamelCase ( self : Any , snake_case_ : Tuple=-2 , snake_case_ : Union[str, Any]=-1 ): if s == d: return [] snake_case__ : Dict = [] snake_case__ : Optional[int] = [] if s == -2: snake_case__ : Any = list(self.graph )[0] stack.append(snake_case_ ) visited.append(snake_case_ ) snake_case__ : Optional[int] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case__ : Optional[int] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(snake_case_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case__ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(snake_case_ ) != 0: snake_case__ : str = stack[len(snake_case_ ) - 1] else: snake_case__ : Union[str, Any] = ss # check if se have reached the starting point if len(snake_case_ ) == 0: return visited def lowerCamelCase ( self : List[str] , snake_case_ : str=-1 ): if c == -1: snake_case__ : Union[str, Any] = floor(random() * 10_000 ) + 10 for i in range(snake_case_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case__ : List[str] = floor(random() * c ) + 1 if n != i: self.add_pair(snake_case_ , snake_case_ , 1 ) def lowerCamelCase ( self : str , snake_case_ : Dict=-2 ): snake_case__ : Union[str, Any] = deque() snake_case__ : Optional[int] = [] if s == -2: snake_case__ : Tuple = list(self.graph )[0] d.append(snake_case_ ) visited.append(snake_case_ ) while d: snake_case__ : str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCamelCase ( self : Any , snake_case_ : Union[str, Any] ): return len(self.graph[u] ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : str = [] snake_case__ : List[str] = [] snake_case__ : str = list(self.graph )[0] stack.append(snake_case_ ) visited.append(snake_case_ ) snake_case__ : Tuple = -2 snake_case__ : Optional[int] = [] snake_case__ : str = s snake_case__ : int = False snake_case__ : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case__ : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case__ : Tuple = len(snake_case_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case__ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case__ : Optional[Any] = True if len(snake_case_ ) != 0: snake_case__ : Dict = stack[len(snake_case_ ) - 1] else: snake_case__ : int = False indirect_parents.append(snake_case_ ) snake_case__ : int = s snake_case__ : Tuple = ss # check if se have reached the starting point if len(snake_case_ ) == 0: return list(snake_case_ ) def lowerCamelCase ( self : str ): snake_case__ : Tuple = [] snake_case__ : Tuple = [] snake_case__ : Any = list(self.graph )[0] stack.append(snake_case_ ) visited.append(snake_case_ ) snake_case__ : List[Any] = -2 snake_case__ : Dict = [] snake_case__ : str = s snake_case__ : Optional[Any] = False snake_case__ : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case__ : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case__ : Optional[int] = len(snake_case_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case__ : int = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case__ : Any = True if len(snake_case_ ) != 0: snake_case__ : Any = stack[len(snake_case_ ) - 1] else: snake_case__ : Tuple = False indirect_parents.append(snake_case_ ) snake_case__ : Optional[int] = s snake_case__ : List[Any] = ss # check if se have reached the starting point if len(snake_case_ ) == 0: return False def lowerCamelCase ( self : Union[str, Any] ): return list(self.graph ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : int=-2 , snake_case_ : Any=-1 ): snake_case__ : int = time() self.dfs(snake_case_ , snake_case_ ) snake_case__ : List[str] = time() return end - begin def lowerCamelCase ( self : List[Any] , snake_case_ : Union[str, Any]=-2 ): snake_case__ : Optional[int] = time() self.bfs(snake_case_ ) snake_case__ : str = time() return end - begin
43
0
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _A ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple = 1 / sqrt(2 ) ): """simple docstring""" a__ : Dict =tau * frequency / samplerate a__ : List[Any] =sin(__UpperCAmelCase ) a__ : List[str] =cos(__UpperCAmelCase ) a__ : List[Any] =_sin / (2 * q_factor) a__ : Dict =(1 - _cos) / 2 a__ : Tuple =1 - _cos a__ : Dict =1 + alpha a__ : Optional[Any] =-2 * _cos a__ : Any =1 - alpha a__ : str =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _A ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str = 1 / sqrt(2 ) ): """simple docstring""" a__ : Optional[Any] =tau * frequency / samplerate a__ : Optional[int] =sin(__UpperCAmelCase ) a__ : Tuple =cos(__UpperCAmelCase ) a__ : Any =_sin / (2 * q_factor) a__ : Any =(1 + _cos) / 2 a__ : Union[str, Any] =-1 - _cos a__ : int =1 + alpha a__ : Tuple =-2 * _cos a__ : Any =1 - alpha a__ : Dict =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] = 1 / sqrt(2 ) ): """simple docstring""" a__ : str =tau * frequency / samplerate a__ : Dict =sin(__UpperCAmelCase ) a__ : Optional[Any] =cos(__UpperCAmelCase ) a__ : str =_sin / (2 * q_factor) a__ : Dict =_sin / 2 a__ : Tuple =0 a__ : str =-ba a__ : Optional[Any] =1 + alpha a__ : Any =-2 * _cos a__ : Any =1 - alpha a__ : Tuple =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _A ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] = 1 / sqrt(2 ) ): """simple docstring""" a__ : Tuple =tau * frequency / samplerate a__ : Optional[int] =sin(__UpperCAmelCase ) a__ : Union[str, Any] =cos(__UpperCAmelCase ) a__ : Any =_sin / (2 * q_factor) a__ : Tuple =1 - alpha a__ : Dict =-2 * _cos a__ : Optional[Any] =1 + alpha a__ : str =IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _A ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int = 1 / sqrt(2 ) , ): """simple docstring""" a__ : int =tau * frequency / samplerate a__ : int =sin(__UpperCAmelCase ) a__ : Optional[Any] =cos(__UpperCAmelCase ) a__ : Any =_sin / (2 * q_factor) a__ : Tuple =10 ** (gain_db / 40) a__ : Dict =1 + alpha * big_a a__ : Union[str, Any] =-2 * _cos a__ : str =1 - alpha * big_a a__ : List[str] =1 + alpha / big_a a__ : Any =-2 * _cos a__ : Optional[Any] =1 - alpha / big_a a__ : int =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] = 1 / sqrt(2 ) , ): """simple docstring""" a__ : Optional[int] =tau * frequency / samplerate a__ : List[Any] =sin(__UpperCAmelCase ) a__ : List[str] =cos(__UpperCAmelCase ) a__ : List[str] =_sin / (2 * q_factor) a__ : Any =10 ** (gain_db / 40) a__ : Union[str, Any] =(big_a + 1) - (big_a - 1) * _cos a__ : int =(big_a + 1) + (big_a - 1) * _cos a__ : Any =(big_a - 1) - (big_a + 1) * _cos a__ : Optional[Any] =(big_a - 1) + (big_a + 1) * _cos a__ : List[str] =2 * sqrt(__UpperCAmelCase ) * alpha a__ : Optional[Any] =big_a * (pmc + aaa) a__ : int =2 * big_a * mpc a__ : List[Any] =big_a * (pmc - aaa) a__ : Optional[Any] =ppmc + aaa a__ : List[Any] =-2 * pmpc a__ : Tuple =ppmc - aaa a__ : Any =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _A ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str] = 1 / sqrt(2 ) , ): """simple docstring""" a__ : List[str] =tau * frequency / samplerate a__ : Optional[Any] =sin(__UpperCAmelCase ) a__ : Any =cos(__UpperCAmelCase ) a__ : Tuple =_sin / (2 * q_factor) a__ : str =10 ** (gain_db / 40) a__ : Optional[Any] =(big_a + 1) - (big_a - 1) * _cos a__ : Tuple =(big_a + 1) + (big_a - 1) * _cos a__ : int =(big_a - 1) - (big_a + 1) * _cos a__ : Union[str, Any] =(big_a - 1) + (big_a + 1) * _cos a__ : Any =2 * sqrt(__UpperCAmelCase ) * alpha a__ : Optional[int] =big_a * (ppmc + aaa) a__ : Optional[Any] =-2 * big_a * pmpc a__ : int =big_a * (ppmc - aaa) a__ : str =pmc + aaa a__ : Any =2 * mpc a__ : Tuple =pmc - aaa a__ : List[str] =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
95
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] lowercase__: Tuple = grid[0] for row_n in range(1 , len(__UpperCAmelCase ) ): lowercase__: Tuple = grid[row_n] lowercase__: Dict = fill_row(__UpperCAmelCase , __UpperCAmelCase ) lowercase__: Union[str, Any] = grid[row_n] return grid[-1][-1] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> list: current_row[0] += row_above[0] for cell_n in range(1 , len(__UpperCAmelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
177
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A__ = logging.get_logger(__name__) A__ = '''▁''' A__ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} A__ = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } A__ = {'''vinai/bartpho-syllable''': 1024} class a ( __lowerCamelCase ): __lowerCAmelCase : Tuple = VOCAB_FILES_NAMES __lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : List[Any] = ["""input_ids""", """attention_mask"""] def __init__( self :str ,__lowercase :int ,__lowercase :Optional[Any] ,__lowercase :Optional[Any]="<s>" ,__lowercase :List[str]="</s>" ,__lowercase :Union[str, Any]="</s>" ,__lowercase :Optional[Any]="<s>" ,__lowercase :List[Any]="<unk>" ,__lowercase :List[Any]="<pad>" ,__lowercase :Tuple="<mask>" ,__lowercase :Optional[Dict[str, Any]] = None ,**__lowercase :Optional[int] ,): # Mask token behave like a normal word, i.e. include the space before it snake_case__ : Tuple = AddedToken(__lowercase ,lstrip=__lowercase ,rstrip=__lowercase ) if isinstance(__lowercase ,__lowercase ) else mask_token snake_case__ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowercase ,eos_token=__lowercase ,unk_token=__lowercase ,sep_token=__lowercase ,cls_token=__lowercase ,pad_token=__lowercase ,mask_token=__lowercase ,sp_model_kwargs=self.sp_model_kwargs ,**__lowercase ,) snake_case__ : int = vocab_file snake_case__ : str = monolingual_vocab_file snake_case__ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowercase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility snake_case__ : int = {} snake_case__ : List[Any] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowercase ) not in self.fairseq_tokens_to_ids: snake_case__ : Any = cnt cnt += 1 with open(__lowercase ,'''r''' ,encoding='''utf-8''' ) as f: for line in f.readlines(): snake_case__ : str = line.strip().split()[0] snake_case__ : Optional[Any] = len(self.fairseq_tokens_to_ids ) if str(__lowercase ) not in self.fairseq_tokens_to_ids: snake_case__ : Union[str, Any] = len(self.fairseq_tokens_to_ids ) snake_case__ : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self :Optional[Any] ): snake_case__ : int = self.__dict__.copy() snake_case__ : Optional[int] = None snake_case__ : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__( self :Union[str, Any] ,__lowercase :Optional[Any] ): snake_case__ : Tuple = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): snake_case__ : List[str] = {} snake_case__ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __lowerCamelCase ( self :List[Any] ,__lowercase :List[int] ,__lowercase :Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : Tuple = [self.cls_token_id] snake_case__ : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCamelCase ( self :str ,__lowercase :List[int] ,__lowercase :Optional[List[int]] = None ,__lowercase :bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase ,token_ids_a=__lowercase ,already_has_special_tokens=__lowercase ) if token_ids_a is None: return [1] + ([0] * len(__lowercase )) + [1] return [1] + ([0] * len(__lowercase )) + [1, 1] + ([0] * len(__lowercase )) + [1] def __lowerCamelCase ( self :Any ,__lowercase :List[int] ,__lowercase :Optional[List[int]] = None ): snake_case__ : Union[str, Any] = [self.sep_token_id] snake_case__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowerCamelCase ( self :Optional[int] ): return len(self.fairseq_ids_to_tokens ) def __lowerCamelCase ( self :int ): snake_case__ : str = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCamelCase ( self :Dict ,__lowercase :str ): return self.sp_model.encode(__lowercase ,out_type=__lowercase ) def __lowerCamelCase ( self :str ,__lowercase :Any ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def __lowerCamelCase ( self :List[Any] ,__lowercase :Optional[Any] ): return self.fairseq_ids_to_tokens[index] def __lowerCamelCase ( self :Tuple ,__lowercase :Optional[int] ): snake_case__ : Optional[Any] = ''''''.join(__lowercase ).replace(__lowercase ,''' ''' ).strip() return out_string def __lowerCamelCase ( self :str ,__lowercase :str ,__lowercase :Optional[str] = None ): if not os.path.isdir(__lowercase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ : Dict = os.path.join( __lowercase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case__ : Any = os.path.join( __lowercase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ,) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase ,'''wb''' ) as fi: snake_case__ : Any = self.sp_model.serialized_model_proto() fi.write(__lowercase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowercase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file ,__lowercase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowercase ,'''w''' ,encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F"""{str(__lowercase )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
44
import argparse from collections import defaultdict def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: """simple docstring""" snake_case__ : Dict = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__lowerCAmelCase , '''r''' ) as f: snake_case__ : str = f.readlines() snake_case__ : List[str] = f"""class {class_name}(""" snake_case__ : Any = f"""{4 * ' '}def {test_name}(""" snake_case__ : Optional[int] = f"""{8 * ' '}{correct_line.split()[0]}""" snake_case__ : List[str] = f"""{16 * ' '}{correct_line.split()[0]}""" snake_case__ : Any = False snake_case__ : Optional[int] = False snake_case__ : Optional[Any] = False snake_case__ : int = False snake_case__ : Union[str, Any] = 0 snake_case__ : str = 0 snake_case__ : Union[str, Any] = [] for line in lines: if line.startswith(__lowerCAmelCase ): snake_case__ : Optional[Any] = True elif in_class and line.startswith(__lowerCAmelCase ): snake_case__ : Optional[int] = True elif in_class and in_func and (line.startswith(__lowerCAmelCase ) or line.startswith(__lowerCAmelCase )): snake_case__ : int = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: snake_case__ : Tuple = True if in_class and in_func and in_line: if ")" not in line: continue else: snake_case__ : List[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * ' '}{correct_line}""" ) snake_case__ : Optional[int] = False else: new_lines.append(__lowerCAmelCase ) with open(__lowerCAmelCase , '''w''' ) as f: for line in new_lines: f.write(__lowerCAmelCase ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase=None ) -> Dict: """simple docstring""" if fail is not None: with open(__lowerCAmelCase , '''r''' ) as f: snake_case__ : Optional[int] = {l.strip() for l in f.readlines()} else: snake_case__ : Tuple = None with open(__lowerCAmelCase , '''r''' ) as f: snake_case__ : Optional[int] = f.readlines() snake_case__ : Tuple = defaultdict(__lowerCAmelCase ) for line in correct_lines: snake_case__ , snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = line.split(''';''' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) A__ = parser.parse_args() main(args.correct_filename, args.fail_filename)
44
1
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _lowercase ( unittest.TestCase , _lowercase ): def lowerCamelCase_ ( self: str ): lowerCamelCase__ : Union[str, Any] = load_tool("""text-classification""" ) self.tool.setup() lowerCamelCase__ : Optional[int] = load_tool("""text-classification""" , remote=UpperCamelCase__ ) def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Optional[int] = self.tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(UpperCamelCase__ , """positive""" ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Optional[int] = self.remote_tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(UpperCamelCase__ , """positive""" ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : str = self.tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(UpperCamelCase__ , """positive""" ) def lowerCamelCase_ ( self: str ): lowerCamelCase__ : List[Any] = self.remote_tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(UpperCamelCase__ , """positive""" )
41
'''simple docstring''' def UpperCamelCase_ ( A__ : int = 10_00 ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = 3 lowerCAmelCase_ : Dict = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
120
0
__lowerCamelCase : Optional[Any] = tuple[float, float, float] __lowerCamelCase : List[str] = tuple[float, float, float] def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Vectorad: UpperCamelCase : str = end_pointa[0] - end_pointa[0] UpperCamelCase : Any = end_pointa[1] - end_pointa[1] UpperCamelCase : Optional[Any] = end_pointa[2] - end_pointa[2] return (x, y, z) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Vectorad: UpperCamelCase : Optional[Any] = ab[1] * ac[2] - ab[2] * ac[1] # *i UpperCamelCase : List[str] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j UpperCamelCase : Union[str, Any] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> bool: return tuple(round(_lowerCAmelCase , _lowerCAmelCase ) for x in vector ) == (0, 0, 0) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 10 ) -> bool: UpperCamelCase : List[str] = create_vector(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : List[str] = create_vector(_lowerCAmelCase , _lowerCAmelCase ) return is_zero_vector(get_ad_vectors_cross(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase )
354
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCamelCase : Dict = tokenizer("Hello there" , return_tensors="tf" ).input_ids UpperCamelCase : int = tokenizer("Hi I am" , return_tensors="tf" ).input_ids UpperCamelCase : Union[str, Any] = model(A_ , labels=A_ ).loss UpperCamelCase : List[str] = -tf.math.reduce_mean(A_ ).numpy() UpperCamelCase : Union[str, Any] = -21.22_81_68 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
140
0
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : '''simple docstring''' def __init__( self , A__ , A__=13 , A__=3 , A__=True , A__=True , A__=0.1 , A__=0.1 , A__=224 , A__=1000 , A__=[3, 3, 6, 4] , A__=[48, 56, 112, 220] , ): A__ : Any = parent A__ : Dict = batch_size A__ : Optional[Any] = num_channels A__ : Tuple = is_training A__ : Union[str, Any] = use_labels A__ : Dict = hidden_dropout_prob A__ : List[str] = attention_probs_dropout_prob A__ : Any = num_labels A__ : Union[str, Any] = image_size A__ : List[Any] = layer_depths A__ : Optional[int] = embed_dims def __A ( self ): A__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ : Union[str, Any] = None if self.use_labels: A__ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) A__ : Optional[Any] = self.get_config() return config, pixel_values, labels def __A ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=A__ , layer_scale_init_value=1e-5 , ) def __A ( self , A__ , A__ , A__ ): A__ : List[Any] = SwiftFormerModel(config=A__ ) model.to(A__ ) model.eval() A__ : str = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __A ( self , A__ , A__ , A__ ): A__ : Optional[Any] = self.num_labels A__ : List[str] = SwiftFormerForImageClassification(A__ ) model.to(A__ ) model.eval() A__ : Tuple = model(A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) A__ : int = SwiftFormerForImageClassification(A__ ) model.to(A__ ) model.eval() A__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ : Dict = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): ((A__) , (A__) , (A__)) : Tuple = self.prepare_config_and_inputs() A__ : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _a (__magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: Optional[int] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCAmelCase__: int = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__: Optional[Any] = False UpperCAmelCase__: int = False UpperCAmelCase__: Optional[Any] = False UpperCAmelCase__: List[Any] = False UpperCAmelCase__: Union[str, Any] = False def __A ( self ): A__ : Any = SwiftFormerModelTester(self ) A__ : str = ConfigTester( self , config_class=A__ , has_text_modality=A__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def __A ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def __A ( self ): pass def __A ( self ): A__ , A__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Dict = model_class(A__ ) A__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A__ , nn.Linear ) ) def __A ( self ): A__ , A__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Optional[int] = model_class(A__ ) A__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Dict = [*signature.parameters.keys()] A__ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A__ ) def __A ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def __A ( self ): A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A__ ) @slow def __A ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Tuple = SwiftFormerModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def __A ( self ): pass def __A ( self ): def check_hidden_states_output(A__ , A__ , A__ ): A__ : Dict = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): A__ : List[Any] = model(**self._prepare_for_class(A__ , A__ ) ) A__ : Union[str, Any] = outputs.hidden_states A__ : Tuple = 8 self.assertEqual(len(A__ ) , A__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(A__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) A__ , A__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : int = True check_hidden_states_output(A__ , A__ , A__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : Union[str, Any] = True check_hidden_states_output(A__ , A__ , A__ ) def __A ( self ): def _config_zero_init(A__ ): A__ : Optional[int] = copy.deepcopy(A__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(A__ , A__ , 1e-10 ) if isinstance(getattr(A__ , A__ , A__ ) , A__ ): A__ : str = _config_zero_init(getattr(A__ , A__ ) ) setattr(A__ , A__ , A__ ) return configs_no_init A__ , A__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() A__ : Tuple = _config_zero_init(A__ ) for model_class in self.all_model_classes: A__ : List[str] = model_class(config=A__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __A ( self ): pass def UpperCamelCase () -> Tuple: A__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _a (unittest.TestCase ): '''simple docstring''' @cached_property def __A ( self ): return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def __A ( self ): A__ : Optional[int] = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(A__ ) A__ : Tuple = self.default_image_processor A__ : Optional[Any] = prepare_img() A__ : Tuple = image_processor(images=A__ , return_tensors="""pt""" ).to(A__ ) # forward pass with torch.no_grad(): A__ : Tuple = model(**A__ ) # verify the logits A__ : int = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A__ ) A__ : Tuple = torch.tensor([[-2.1_703e00, 2.1_107e00, -2.0_811e00]] ).to(A__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A__ , atol=1e-4 ) )
192
import argparse import os import re A_ : List[str] = 'src/diffusers' # Pattern that looks at the indentation in a line. A_ : Union[str, Any] = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. A_ : int = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A_ : Optional[int] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. A_ : List[Any] = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A_ : List[str] = re.compile(r'\[([^\]]+)\]') def UpperCamelCase (lowercase_: List[str] ) -> Dict: A__ : Optional[Any] = _re_indent.search(lowercase_ ) return "" if search is None else search.groups()[0] def UpperCamelCase (lowercase_: Dict , lowercase_: Any="" , lowercase_: Any=None , lowercase_: Any=None ) -> Tuple: A__ : Optional[Any] = 0 A__ : str = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(lowercase_ ): index += 1 A__ : Tuple = ["""\n""".join(lines[:index] )] else: A__ : Optional[Any] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). A__ : Union[str, Any] = [lines[index]] index += 1 while index < len(lowercase_ ) and (end_prompt is None or not lines[index].startswith(lowercase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowercase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(lowercase_ ) ) if index < len(lowercase_ ) - 1: A__ : Union[str, Any] = [lines[index + 1]] index += 1 else: A__ : List[Any] = [] else: blocks.append("""\n""".join(lowercase_ ) ) A__ : int = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowercase_ ) > 0: blocks.append("""\n""".join(lowercase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowercase_ ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def UpperCamelCase (lowercase_: str ) -> str: def _inner(lowercase_: Union[str, Any] ): return key(lowercase_ ).lower().replace("""_""" , """""" ) return _inner def UpperCamelCase (lowercase_: int , lowercase_: Any=None ) -> str: # If no key is provided, we use a noop. def noop(lowercase_: Any ): return x if key is None: A__ : Optional[Any] = noop # Constants are all uppercase, they go first. A__ : Optional[int] = [obj for obj in objects if key(lowercase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. A__ : List[Any] = [obj for obj in objects if key(lowercase_ )[0].isupper() and not key(lowercase_ ).isupper()] # Functions begin with a lowercase, they go last. A__ : Tuple = [obj for obj in objects if not key(lowercase_ )[0].isupper()] A__ : Any = ignore_underscore(lowercase_ ) return sorted(lowercase_ , key=lowercase_ ) + sorted(lowercase_ , key=lowercase_ ) + sorted(lowercase_ , key=lowercase_ ) def UpperCamelCase (lowercase_: List[Any] ) -> List[Any]: # This inner function sort imports between [ ]. def _replace(lowercase_: List[Any] ): A__ : Tuple = match.groups()[0] if "," not in imports: return f"""[{imports}]""" A__ : Optional[int] = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: A__ : Any = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(lowercase_ )] ) + "]" A__ : Dict = import_statement.split("""\n""" ) if len(lowercase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. A__ : List[str] = 2 if lines[1].strip() == """[""" else 1 A__ : Any = [(i, _re_strip_line.search(lowercase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] A__ : Any = sort_objects(lowercase_ , key=lambda lowercase_ : x[1] ) A__ : int = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowercase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: A__ : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: A__ : Any = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: A__ : Tuple = keys[:-1] A__ : List[Any] = get_indent(lines[1] ) + """, """.join([f"""\"{k}\"""" for k in sort_objects(lowercase_ )] ) return "\n".join(lowercase_ ) else: # Finally we have to deal with imports fitting on one line A__ : int = _re_bracket_content.sub(_replace , lowercase_ ) return import_statement def UpperCamelCase (lowercase_: Optional[int] , lowercase_: str=True ) -> Any: with open(lowercase_ , """r""" ) as f: A__ : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 A__ : Tuple = split_code_in_indented_blocks( lowercase_ , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowercase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. A__ : int = main_blocks[block_idx] A__ : Optional[Any] = block.split("""\n""" ) # Get to the start of the imports. A__ : Any = 0 while line_idx < len(lowercase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: A__ : Optional[Any] = len(lowercase_ ) else: line_idx += 1 if line_idx >= len(lowercase_ ): continue # Ignore beginning and last line: they don't contain anything. A__ : Union[str, Any] = """\n""".join(block_lines[line_idx:-1] ) A__ : List[Any] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. A__ : Union[str, Any] = split_code_in_indented_blocks(lowercase_ , indent_level=lowercase_ ) # We have two categories of import key: list or _import_structure[key].append/extend A__ : Optional[Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. A__ : int = [(pattern.search(lowercase_ ).groups()[0] if pattern.search(lowercase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. A__ : int = [(i, key) for i, key in enumerate(lowercase_ ) if key is not None] A__ : List[Any] = [x[0] for x in sorted(lowercase_ , key=lambda lowercase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. A__ : Optional[int] = 0 A__ : Any = [] for i in range(len(lowercase_ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: A__ : Any = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(lowercase_ ) count += 1 # And we put our main block back together with its first and last line. A__ : Tuple = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(lowercase_ ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(lowercase_ , """w""" ) as f: f.write("""\n""".join(lowercase_ ) ) def UpperCamelCase (lowercase_: Any=True ) -> Any: A__ : Dict = [] for root, _, files in os.walk(lowercase_ ): if "__init__.py" in files: A__ : List[Any] = sort_imports(os.path.join(lowercase_ , """__init__.py""" ) , check_only=lowercase_ ) if result: A__ : Optional[int] = [os.path.join(lowercase_ , """__init__.py""" )] if len(lowercase_ ) > 0: raise ValueError(f"""Would overwrite {len(lowercase_ )} files, run `make style`.""" ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') A_ : List[str] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
192
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
364
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowercase_ = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } lowercase_ = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ): '''simple docstring''' __snake_case , __snake_case : str = create_model( """HTSAT-tiny""" , """roberta""" , __SCREAMING_SNAKE_CASE , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=__SCREAMING_SNAKE_CASE , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : Union[str, Any] = {} __snake_case : List[Any] = R""".*sequential.(\d+).*""" __snake_case : Union[str, Any] = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __snake_case : Optional[Any] = key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # replace sequential layers with list __snake_case : Optional[Any] = re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) __snake_case : Dict = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(__SCREAMING_SNAKE_CASE )//3}.linear.''' ) elif re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case : str = int(re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __snake_case : List[Any] = 1 if projecton_layer == 0 else 2 __snake_case : Tuple = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value __snake_case : Optional[int] = value __snake_case : Any = mixed_qkv.size(0 ) // 3 __snake_case : List[Any] = mixed_qkv[:qkv_dim] __snake_case : Tuple = mixed_qkv[qkv_dim : qkv_dim * 2] __snake_case : List[Any] = mixed_qkv[qkv_dim * 2 :] __snake_case : Any = query_layer __snake_case : Dict = key_layer __snake_case : Optional[Any] = value_layer else: __snake_case : List[str] = value return model_state_dict def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=False ): '''simple docstring''' __snake_case , __snake_case : List[str] = init_clap(__SCREAMING_SNAKE_CASE , enable_fusion=__SCREAMING_SNAKE_CASE ) clap_model.eval() __snake_case : Tuple = clap_model.state_dict() __snake_case : Union[str, Any] = rename_state_dict(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = ClapConfig() __snake_case : Tuple = enable_fusion __snake_case : Any = ClapModel(__SCREAMING_SNAKE_CASE ) # ignore the spectrogram embedding layer model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) transformers_config.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") lowercase_ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
20
0
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def snake_case_ ( A_ : str, A_ : str, A_ : Optional[str] = None ): '''simple docstring''' if version.parse(hfh.__version__ ).release < version.parse('''0.11.0''' ).release: # old versions of hfh don't url-encode the file path _lowerCamelCase : Optional[Any] = quote(A_ ) return hfh.hf_hub_url(A_, A_, repo_type='''dataset''', revision=A_ )
72
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Union[str, Any] = """wav2vec2""" def __init__( self , __lowercase=32 , __lowercase=768 , __lowercase=12 , __lowercase=12 , __lowercase=3_072 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.02 , __lowercase=1E-5 , __lowercase="group" , __lowercase="gelu" , __lowercase=(512, 512, 512, 512, 512, 512, 512) , __lowercase=(5, 2, 2, 2, 2, 2, 2) , __lowercase=(10, 3, 3, 3, 3, 2, 2) , __lowercase=False , __lowercase=128 , __lowercase=16 , __lowercase=False , __lowercase=True , __lowercase=0.05 , __lowercase=10 , __lowercase=2 , __lowercase=0.0 , __lowercase=10 , __lowercase=0 , __lowercase=320 , __lowercase=2 , __lowercase=0.1 , __lowercase=100 , __lowercase=256 , __lowercase=256 , __lowercase=0.1 , __lowercase="sum" , __lowercase=False , __lowercase=False , __lowercase=256 , __lowercase=(512, 512, 512, 512, 1_500) , __lowercase=(5, 3, 3, 1, 1) , __lowercase=(1, 2, 3, 1, 1) , __lowercase=512 , __lowercase=0 , __lowercase=1 , __lowercase=2 , __lowercase=False , __lowercase=3 , __lowercase=2 , __lowercase=3 , __lowercase=None , __lowercase=None , **__lowercase , ) -> int: super().__init__(**__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase) __UpperCamelCase :Any = hidden_size __UpperCamelCase :int = feat_extract_norm __UpperCamelCase :Tuple = feat_extract_activation __UpperCamelCase :Union[str, Any] = list(__lowercase) __UpperCamelCase :List[Any] = list(__lowercase) __UpperCamelCase :int = list(__lowercase) __UpperCamelCase :List[Any] = conv_bias __UpperCamelCase :Optional[int] = num_conv_pos_embeddings __UpperCamelCase :Dict = num_conv_pos_embedding_groups __UpperCamelCase :Any = len(self.conv_dim) __UpperCamelCase :List[str] = num_hidden_layers __UpperCamelCase :int = intermediate_size __UpperCamelCase :str = hidden_act __UpperCamelCase :Any = num_attention_heads __UpperCamelCase :int = hidden_dropout __UpperCamelCase :Tuple = attention_dropout __UpperCamelCase :List[str] = activation_dropout __UpperCamelCase :Optional[Any] = feat_proj_dropout __UpperCamelCase :Any = final_dropout __UpperCamelCase :Any = layerdrop __UpperCamelCase :str = layer_norm_eps __UpperCamelCase :Optional[Any] = initializer_range __UpperCamelCase :List[str] = vocab_size __UpperCamelCase :str = do_stable_layer_norm __UpperCamelCase :Union[str, Any] = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase :List[Any] = apply_spec_augment __UpperCamelCase :Tuple = mask_time_prob __UpperCamelCase :int = mask_time_length __UpperCamelCase :Dict = mask_time_min_masks __UpperCamelCase :str = mask_feature_prob __UpperCamelCase :List[str] = mask_feature_length __UpperCamelCase :Union[str, Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __UpperCamelCase :Optional[Any] = num_codevectors_per_group __UpperCamelCase :List[Any] = num_codevector_groups __UpperCamelCase :Tuple = contrastive_logits_temperature __UpperCamelCase :Optional[int] = feat_quantizer_dropout __UpperCamelCase :Optional[int] = num_negatives __UpperCamelCase :List[Any] = codevector_dim __UpperCamelCase :str = proj_codevector_dim __UpperCamelCase :List[str] = diversity_loss_weight # ctc loss __UpperCamelCase :Tuple = ctc_loss_reduction __UpperCamelCase :Tuple = ctc_zero_infinity # adapter __UpperCamelCase :List[str] = add_adapter __UpperCamelCase :Tuple = adapter_kernel_size __UpperCamelCase :str = adapter_stride __UpperCamelCase :Tuple = num_adapter_layers __UpperCamelCase :Tuple = output_hidden_size or hidden_size __UpperCamelCase :Optional[Any] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. __UpperCamelCase :Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __UpperCamelCase :Optional[int] = list(__lowercase) __UpperCamelCase :List[Any] = list(__lowercase) __UpperCamelCase :List[Any] = list(__lowercase) __UpperCamelCase :str = xvector_output_dim @property def UpperCamelCase__ ( self) -> List[str]: return functools.reduce(operator.mul , self.conv_stride , 1)
43
0
from math import factorial def lowerCAmelCase (__UpperCamelCase : Optional[int] = 1_0_0 ): """simple docstring""" return sum(map(A_ , str(factorial(A_ ) ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
358
"""simple docstring""" def lowerCAmelCase (__UpperCamelCase : int = 3 , __UpperCamelCase : int = 7 , __UpperCamelCase : int = 1_0_0_0_0_0_0 ): """simple docstring""" __UpperCamelCase =0 __UpperCamelCase =1 for current_denominator in range(1 , limit + 1 ): __UpperCamelCase =current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __UpperCamelCase =current_numerator __UpperCamelCase =current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_000_000))
85
0
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
44
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer _a : List[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _a : Union[str, Any] = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } _a : Optional[Any] = { 'google/electra-small-generator': 512, 'google/electra-base-generator': 512, 'google/electra-large-generator': 512, 'google/electra-small-discriminator': 512, 'google/electra-base-discriminator': 512, 'google/electra-large-discriminator': 512, } _a : Any = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[Any] = ElectraTokenizer def __init__( self , a__=None , a__=None , a__=True , a__="[UNK]" , a__="[SEP]" , a__="[PAD]" , a__="[CLS]" , a__="[MASK]" , a__=True , a__=None , **a__ , ): super().__init__( a__ , tokenizer_file=a__ , do_lower_case=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , tokenize_chinese_chars=a__ , strip_accents=a__ , **a__ , ) _lowerCAmelCase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , a__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , a__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , a__ ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(a__ , normalizer_state.pop("""type""" ) ) _lowerCAmelCase : int = do_lower_case _lowerCAmelCase : str = strip_accents _lowerCAmelCase : Dict = tokenize_chinese_chars _lowerCAmelCase : str = normalizer_class(**a__ ) _lowerCAmelCase : List[str] = do_lower_case def __A ( self , a__ , a__=None ): _lowerCAmelCase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , a__ , a__ = None ): _lowerCAmelCase : List[str] = [self.sep_token_id] _lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Optional[Any] = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ )
44
1
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowercase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) UpperCamelCase__ :Tuple = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) UpperCamelCase__ :Any = '''The dog is cute and lives in the garden house''' UpperCamelCase__ :Any = jnp.array([tokenizer.encode(UpperCamelCase_ )] ) UpperCamelCase__ :Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase__ :Union[str, Any] = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) UpperCamelCase__ :Any = model(UpperCamelCase_ )['''last_hidden_state'''] self.assertEqual(output.shape , UpperCamelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , UpperCamelCase_ , atol=1e-3 ) )
219
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def a ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) UpperCamelCase__ :Union[str, Any] = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(__a ) # Let's go UpperCamelCase__ :Optional[int] = parser.parse_args() if not hasattr(__a , '''func''' ): parser.print_help() exit(1 ) # Run UpperCamelCase__ :Optional[int] = args.func(__a ) service.run() if __name__ == "__main__": main()
219
1
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> Dict: """simple docstring""" if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) __lowerCamelCase = number_of_bytes // partitions __lowerCamelCase = [] for i in range(__lowercase ): __lowerCamelCase = i * bytes_per_partition + 1 __lowerCamelCase = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F"""{start_bytes}-{end_bytes}""" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
90
import logging from transformers import PretrainedConfig _UpperCAmelCase = logging.getLogger(__name__) _UpperCAmelCase = { """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''bertabs''' def __init__( self , lowercase=3_0_5_2_2 , lowercase=5_1_2 , lowercase=6 , lowercase=5_1_2 , lowercase=8 , lowercase=5_1_2 , lowercase=0.2 , lowercase=6 , lowercase=7_6_8 , lowercase=8 , lowercase=2_0_4_8 , lowercase=0.2 , **lowercase , ): """simple docstring""" super().__init__(**lowercase ) A_ : Optional[int] = vocab_size A_ : Union[str, Any] = max_pos A_ : List[str] = enc_layers A_ : Tuple = enc_hidden_size A_ : List[Any] = enc_heads A_ : str = enc_ff_size A_ : Optional[Any] = enc_dropout A_ : Dict = dec_layers A_ : Optional[Any] = dec_hidden_size A_ : int = dec_heads A_ : Any = dec_ff_size A_ : List[str] = dec_dropout
140
0
'''simple docstring''' def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(_SCREAMING_SNAKE_CASE , int(b / 2 ) ) * actual_power(_SCREAMING_SNAKE_CASE , int(b / 2 ) ) else: return a * actual_power(_SCREAMING_SNAKE_CASE , int(b / 2 ) ) * actual_power(_SCREAMING_SNAKE_CASE , int(b / 2 ) ) def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return actual_power(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(power(-2, -3))
67
'''simple docstring''' import os from pathlib import Path def a__ ( ) -> Union[str, Any]: """simple docstring""" from torch.utils.cpp_extension import load UpperCAmelCase_ : Union[str, Any] = Path(_SCREAMING_SNAKE_CASE ).resolve().parent.parent.parent / "kernels" / "deformable_detr" UpperCAmelCase_ : Any = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , _SCREAMING_SNAKE_CASE , with_cuda=_SCREAMING_SNAKE_CASE , extra_include_paths=[str(_SCREAMING_SNAKE_CASE )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
67
1
'''simple docstring''' from __future__ import annotations def UpperCamelCase_( snake_case : Union[str, Any] ): '''simple docstring''' for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
85
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __snake_case : def __init__( self ,snake_case ,): '''simple docstring''' lowercase : Any = parent lowercase : Tuple = 13 lowercase : str = 7 lowercase : Dict = True lowercase : Dict = True lowercase : str = True lowercase : List[str] = True lowercase : int = True lowercase : Union[str, Any] = False lowercase : Dict = False lowercase : List[Any] = False lowercase : List[Any] = 2 lowercase : Optional[Any] = 99 lowercase : int = 0 lowercase : Tuple = 32 lowercase : int = 2 lowercase : Tuple = 4 lowercase : List[Any] = 0.1 lowercase : Tuple = 0.1 lowercase : List[Any] = 512 lowercase : int = 16 lowercase : Dict = 2 lowercase : int = 0.02 lowercase : Union[str, Any] = 3 lowercase : Any = 4 lowercase : List[Any] = """last""" lowercase : Tuple = True lowercase : List[Any] = None lowercase : Any = 0 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ,dtype=tf.floataa ) lowercase : Tuple = None if self.use_input_lengths: lowercase : List[str] = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Tuple = None if self.use_token_type_ids: lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) lowercase : List[str] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase : str = ids_tensor([self.batch_size] ,2 ,dtype=tf.floataa ) lowercase : Optional[Any] = ids_tensor([self.batch_size] ,self.num_choices ) lowercase : str = FlaubertConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,bos_token_id=self.bos_token_id ,) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Tuple = TFFlaubertModel(config=snake_case ) lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowercase : Optional[Any] = model(snake_case ) lowercase : List[Any] = [input_ids, input_mask] lowercase : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : List[Any] = TFFlaubertWithLMHeadModel(snake_case ) lowercase : Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Tuple = TFFlaubertForQuestionAnsweringSimple(snake_case ) lowercase : Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths} lowercase : Tuple = model(snake_case ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Union[str, Any] = TFFlaubertForSequenceClassification(snake_case ) lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths} lowercase : str = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Any = self.num_labels lowercase : List[str] = TFFlaubertForTokenClassification(config=snake_case ) lowercase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Any = self.num_choices lowercase : Dict = TFFlaubertForMultipleChoice(config=snake_case ) lowercase : Any = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Optional[Any] = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Dict = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Union[str, Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : int = config_and_inputs lowercase : List[str] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class __snake_case ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Dict= ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _a : Optional[Any]= ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _a : Any= ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _a : Tuple= False _a : int= False def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = TFFlaubertModelTester(self ) lowercase : List[Any] = ConfigTester(self ,config_class=snake_case ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Dict = TFFlaubertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_tf @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) lowercase : int = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] ,dtype=tf.intaa ,) # "J'aime flaubert !" lowercase : Dict = model(snake_case )[0] lowercase : Union[str, Any] = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape ,snake_case ) # compare the actual values for a slice. lowercase : Tuple = tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
20
0
__SCREAMING_SNAKE_CASE = [0, 2, 4, 6, 8] __SCREAMING_SNAKE_CASE = [1, 3, 5, 7, 9] def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 A = 0 for digit in range(10 ): A = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , a__ , a__ ) return result A = 0 for digita in range(10 ): A = digita if (remainder + digita) % 2 == 0: A = ODD_DIGITS else: A = EVEN_DIGITS for digita in other_parity_digits: A = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , a__ , a__ , ) return result def UpperCAmelCase ( _lowerCamelCase = 9 ): A = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(a__ , 0 , [0] * length , a__ ) return result if __name__ == "__main__": print(F"""{solution() = }""")
371
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {"""vocab_file""": """spiece.model"""} __SCREAMING_SNAKE_CASE = { """vocab_file""": { """bert_for_seq_generation""": ( """https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model""" ), } } __SCREAMING_SNAKE_CASE = {"""bert_for_seq_generation""": 512} class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = [] a__ = ["input_ids", "attention_mask"] def __init__( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : int="<s>" , __lowerCamelCase : List[str]="</s>" , __lowerCamelCase : Dict="<unk>" , __lowerCamelCase : Optional[int]="<pad>" , __lowerCamelCase : Optional[int]="<::::>" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Tuple , ) -> None: A : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , sep_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) A : Union[str, Any] = vocab_file A : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Any: return self.sp_model.get_piece_size() def SCREAMING_SNAKE_CASE__ ( self : int ) -> Dict: A : str = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ) -> Tuple: A : Tuple = self.__dict__.copy() A : Optional[int] = None return state def __setstate__( self : Dict , __lowerCamelCase : Union[str, Any] ) -> Tuple: A : Optional[int] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A : int = {} A : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : str , __lowerCamelCase : Union[str, Any] ) -> Dict: return self.sp_model.piece_to_id(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : Tuple ) -> Optional[Any]: A : Optional[int] = self.sp_model.IdToPiece(__lowerCamelCase ) return token def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , __lowerCamelCase : Optional[int] ) -> List[str]: A : List[str] = [] A : List[str] = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCamelCase ) + token A : Union[str, Any] = [] else: current_sub_tokens.append(__lowerCamelCase ) out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A : str = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: A : str = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
256
0
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def snake_case_ ( A_ : Optional[Any] ): '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def snake_case_ ( A_ : Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Tuple = np.max(_outputs, axis=-1, keepdims=A_ ) _lowerCamelCase : str = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=A_ ) class __snake_case ( _lowercase): snake_case__ : Tuple = "sigmoid" snake_case__ : str = "softmax" snake_case__ : Tuple = "none" @add_end_docstrings( _lowercase , R"\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `\"default\"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `\"sigmoid\"`: Applies the sigmoid function on the output.\n - `\"softmax\"`: Applies the softmax function on the output.\n - `\"none\"`: Does not apply any function on the output.\n " , ) class __snake_case ( _lowercase): snake_case__ : Dict = False snake_case__ : List[str] = ClassificationFunction.NONE def __init__( self : List[str] , **__lowerCAmelCase : Optional[Any] ): """simple docstring""" super().__init__(**__lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : List[str]="" , **__lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Any = tokenizer_kwargs _lowerCamelCase : List[Any] = {} if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None: _lowerCamelCase : str = self.model.config.return_all_scores if isinstance(__lowerCAmelCase , __lowerCAmelCase ) or top_k is None: _lowerCamelCase : Tuple = top_k _lowerCamelCase : List[str] = False elif return_all_scores is not None: warnings.warn( '''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of''' ''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , __lowerCAmelCase , ) if return_all_scores: _lowerCamelCase : Dict = None else: _lowerCamelCase : Any = 1 if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : str = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _lowerCamelCase : int = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : Tuple , *__lowerCAmelCase : int , **__lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = super().__call__(*__lowerCAmelCase , **__lowerCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _lowerCamelCase : Dict = '''top_k''' not in kwargs if isinstance(args[0] , __lowerCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Optional[int] , **__lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = self.framework if isinstance(__lowerCAmelCase , __lowerCAmelCase ): return self.tokenizer(**__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(__lowerCAmelCase ) == 1 and isinstance(inputs[0] , __lowerCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( '''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a''' ''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' ) return self.tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" return self.model(**__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : int=1 , __lowerCAmelCase : Dict=True ): """simple docstring""" if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _lowerCamelCase : Optional[int] = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _lowerCamelCase : Optional[int] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None: _lowerCamelCase : List[str] = self.model.config.function_to_apply else: _lowerCamelCase : List[Any] = ClassificationFunction.NONE _lowerCamelCase : Union[str, Any] = model_outputs['''logits'''][0] _lowerCamelCase : Dict = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _lowerCamelCase : Dict = sigmoid(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: _lowerCamelCase : Tuple = softmax(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: _lowerCamelCase : str = outputs else: raise ValueError(f'''Unrecognized `function_to_apply` argument: {function_to_apply}''' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _lowerCamelCase : Tuple = [ {'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(__lowerCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda __lowerCAmelCase : x["score"] , reverse=__lowerCAmelCase ) if top_k is not None: _lowerCamelCase : Tuple = dict_scores[:top_k] return dict_scores
72
'''simple docstring''' from statistics import mean, stdev def UpperCamelCase_( snake_case : list , snake_case : int = 3 ): '''simple docstring''' snake_case_ = min(snake_case ) snake_case_ = max(snake_case ) # normalize data return [round((x - x_min) / (x_max - x_min) , snake_case ) for x in data] def UpperCamelCase_( snake_case : list , snake_case : int = 3 ): '''simple docstring''' snake_case_ = mean(snake_case ) snake_case_ = stdev(snake_case ) # standardize data return [round((x - mu) / (sigma) , snake_case ) for x in data]
85
0
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Tuple , __a : Dict , __a : List[Any]=13 , __a : List[Any]=7 , __a : Tuple=True , __a : Optional[Any]=True , __a : int=True , __a : Union[str, Any]=True , __a : str=99 , __a : Optional[int]=64 , __a : Any=32 , __a : Optional[int]=5 , __a : Union[str, Any]=4 , __a : List[str]=37 , __a : Optional[int]="gelu" , __a : Optional[Any]=0.1 , __a : List[str]=0.1 , __a : Any=5_12 , __a : Dict=16 , __a : List[str]=2 , __a : Optional[int]=0.02 , __a : int=3 , __a : int=4 , __a : Optional[Any]=None , ): _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = embedding_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def UpperCamelCase__ ( self : Any ): _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self : str ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self : Tuple , __a : List[Any] , __a : Optional[int] , __a : Optional[int] , __a : Union[str, Any] , __a : List[str] , __a : str , __a : int ): _a = MobileBertModel(config=__snake_case ) model.to(__snake_case ) model.eval() _a = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) _a = model(__snake_case , token_type_ids=__snake_case ) _a = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self : Dict , __a : str , __a : str , __a : Any , __a : str , __a : str , __a : Optional[int] , __a : Tuple ): _a = MobileBertForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() _a = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self : List[str] , __a : Union[str, Any] , __a : Optional[int] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[int] , __a : List[str] , __a : List[Any] ): _a = MobileBertForNextSentencePrediction(config=__snake_case ) model.to(__snake_case ) model.eval() _a = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCamelCase__ ( self : str , __a : Any , __a : Union[str, Any] , __a : int , __a : List[Any] , __a : Optional[int] , __a : Optional[int] , __a : Optional[Any] ): _a = MobileBertForPreTraining(config=__snake_case ) model.to(__snake_case ) model.eval() _a = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , next_sentence_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCamelCase__ ( self : Optional[Any] , __a : Tuple , __a : int , __a : Any , __a : List[str] , __a : Dict , __a : Dict , __a : Tuple ): _a = MobileBertForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() _a = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : Optional[int] , __a : Union[str, Any] , __a : List[str] , __a : Optional[int] , __a : List[str] , __a : str ): _a = self.num_labels _a = MobileBertForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() _a = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self : List[str] , __a : Dict , __a : Tuple , __a : Optional[Any] , __a : List[str] , __a : Tuple , __a : str , __a : Any ): _a = self.num_labels _a = MobileBertForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() _a = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self : Optional[Any] , __a : List[str] , __a : int , __a : List[Any] , __a : Optional[int] , __a : List[Any] , __a : Union[str, Any] , __a : Dict ): _a = self.num_choices _a = MobileBertForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() _a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.prepare_config_and_inputs() ( _a ) = config_and_inputs _a = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __a =( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) __a =( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) __a =True def UpperCamelCase__ ( self : List[Any] , __a : Tuple , __a : Tuple , __a : Dict=False ): _a = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class in get_values(__snake_case ): _a = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case ) _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def UpperCamelCase__ ( self : Optional[Any] ): _a = MobileBertModelTester(self ) _a = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def UpperCamelCase__ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self : List[Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__snake_case ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__snake_case ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__snake_case ) def UpperCamelCase__ ( self : Any ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__snake_case ) def UpperCamelCase__ ( self : List[Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__snake_case ) def UpperCamelCase__ ( self : int ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__snake_case ) def UpperCamelCase__ ( self : str ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__snake_case ) def UpperCamelCase__ ( self : List[Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__snake_case ) def _lowerCamelCase ( lowercase : Any ) -> Union[str, Any]: return torch.tensor( _A , dtype=torch.long , device=_A , ) lowerCAmelCase_ : Tuple = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self : Any ): _a = MobileBertModel.from_pretrained("google/mobilebert-uncased" ).to(__snake_case ) _a = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): _a = model(__snake_case )[0] _a = torch.Size((1, 9, 5_12) ) self.assertEqual(output.shape , __snake_case ) _a = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=__snake_case , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE _a = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) _a = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
358
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar lowerCAmelCase_ : List[str] = TypeVar('T') lowerCAmelCase_ : Dict = TypeVar('U') class __SCREAMING_SNAKE_CASE (Generic[T, U] ): """simple docstring""" def __init__( self : Union[str, Any] , __a : T | None , __a : U | None ): _a = key _a = val _a = None _a = None def __repr__( self : Any ): return ( f'Node: key: {self.key}, val: {self.val}, ' f'has next: {bool(self.next )}, has prev: {bool(self.prev )}' ) class __SCREAMING_SNAKE_CASE (Generic[T, U] ): """simple docstring""" def __init__( self : Dict ): _a = DoubleLinkedListNode(__a , __a ) _a = DoubleLinkedListNode(__a , __a ) _a , _a = self.rear, self.head def __repr__( self : str ): _a = ["DoubleLinkedList"] _a = self.head while node.next is not None: rep.append(str(__a ) ) _a = node.next rep.append(str(self.rear ) ) return ",\n ".join(__a ) def UpperCamelCase__ ( self : int , __a : DoubleLinkedListNode[T, U] ): _a = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _a = node _a = previous _a = node _a = self.rear def UpperCamelCase__ ( self : Any , __a : DoubleLinkedListNode[T, U] ): if node.prev is None or node.next is None: return None _a = node.next _a = node.prev _a = None _a = None return node class __SCREAMING_SNAKE_CASE (Generic[T, U] ): """simple docstring""" __a ={} def __init__( self : Union[str, Any] , __a : int ): _a = DoubleLinkedList() _a = capacity _a = 0 _a = 0 _a = 0 _a = {} def __repr__( self : Optional[int] ): return ( f'CacheInfo(hits={self.hits}, misses={self.miss}, ' f'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self : str , __a : T ): return key in self.cache def UpperCamelCase__ ( self : str , __a : T ): # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 _a = self.cache[key] _a = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(__a ) return node.val self.miss += 1 return None def UpperCamelCase__ ( self : Tuple , __a : T , __a : U ): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _a = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(__a ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _a = DoubleLinkedListNode(__a , __a ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _a = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _a = value self.list.add(__a ) @classmethod def UpperCamelCase__ ( cls : Tuple , __a : int = 1_28 ): def cache_decorator_inner(__a : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*__a : T ) -> U: if func not in cls.decorator_function_to_instance_map: _a = LRUCache(__a ) _a = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _a = func(*__a ) cls.decorator_function_to_instance_map[func].put(args[0] , __a ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(__a , "cache_info" , __a ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
346
0
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __lowerCamelCase : List[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __lowerCamelCase : int = [0, 25, 50] __lowerCamelCase : Tuple = [25, 50, 75] __lowerCamelCase : List[str] = fuzz.membership.trimf(X, abca) __lowerCamelCase : Tuple = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __lowerCamelCase : List[str] = np.ones(75) __lowerCamelCase : Tuple = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __lowerCamelCase : str = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __lowerCamelCase : int = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __lowerCamelCase : Union[str, Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __lowerCamelCase : Union[str, Any] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __lowerCamelCase : List[Any] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __lowerCamelCase : int = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __lowerCamelCase : int = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __lowerCamelCase : str = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
219
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __lowerCamelCase : List[str] = object() # For specifying empty leaf dict `{}` __lowerCamelCase : Optional[int] = object() def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = tuple((re.compile(x + """$""" ) for x in qs) ) for i in range(len(__UpperCamelCase ) - len(__UpperCamelCase ) + 1 ): SCREAMING_SNAKE_CASE__ = [x.match(__UpperCamelCase ) for x, y in zip(__UpperCamelCase , ks[i:] )] if matches and all(__UpperCamelCase ): return True return False def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> List[str]: """simple docstring""" def replace(__UpperCamelCase : Tuple , __UpperCamelCase : Any ): for rule, replacement in rules: if _match(__UpperCamelCase , __UpperCamelCase ): return replacement return val return replace def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("""mp""" , __UpperCamelCase )), (("transformer", "wte", "embedding"), P("""mp""" , __UpperCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__UpperCamelCase , """mp""" )), (("attention", "out_proj", "kernel"), P("""mp""" , __UpperCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__UpperCamelCase , """mp""" )), (("mlp", "c_fc", "bias"), P("""mp""" )), (("mlp", "c_proj", "kernel"), P("""mp""" , __UpperCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = _get_partition_rules() SCREAMING_SNAKE_CASE__ = _replacement_rules(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = {k: _unmatched for k in flatten_dict(__UpperCamelCase )} SCREAMING_SNAKE_CASE__ = {k: replace(__UpperCamelCase , __UpperCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__UpperCamelCase ) )
219
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A = { '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
356
"""simple docstring""" import os import string import sys A = 1 << 8 A = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 27, '''up''': 65 + ARROW_KEY_FLAG, '''down''': 66 + ARROW_KEY_FLAG, '''right''': 67 + ARROW_KEY_FLAG, '''left''': 68 + ARROW_KEY_FLAG, '''mod_int''': 91, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 50, '''delete''': 51, '''pg_up''': 53, '''pg_down''': 54, } A = KEYMAP['''up'''] A = KEYMAP['''left'''] if sys.platform == "win32": A = [] A = { B'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, B'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(10): A = ord(str(i)) def __A ( ) -> Dict: if os.name == "nt": import msvcrt __a : Optional[Any] = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(a_) == 0: # Read the keystroke __a : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __a : Optional[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __a : Union[str, Any] = chr(WIN_KEYMAP[cha]) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''])) WIN_CH_BUFFER.append(a_) if ord(a_) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_26)) __a : str = chr(KEYMAP['''esc''']) except KeyError: __a : str = cha[1] else: __a : Optional[Any] = ch.decode(a_) else: __a : Union[str, Any] = WIN_CH_BUFFER.pop(0) elif os.name == "posix": import termios import tty __a : Any = sys.stdin.fileno() __a : List[str] = termios.tcgetattr(a_) try: tty.setraw(a_) __a : int = sys.stdin.read(1) finally: termios.tcsetattr(a_ , termios.TCSADRAIN , a_) return ch def __A ( ) -> str: __a : Any = get_raw_chars() if ord(a_) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(a_) == KEYMAP["esc"]: __a : str = get_raw_chars() if ord(a_) == KEYMAP["mod_int"]: __a : List[str] = get_raw_chars() if ord(a_) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(a_) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(a_) + ARROW_KEY_FLAG) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
188
0
'''simple docstring''' from __future__ import annotations import pandas as pd def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> list[int]: __lowerCamelCase = [0] * no_of_processes __lowerCamelCase = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(UpperCamelCase__ ): __lowerCamelCase = burst_time[i] __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 9_99_99_99_99 __lowerCamelCase = 0 __lowerCamelCase = False # Process until all processes are completed while complete != no_of_processes: for j in range(UpperCamelCase__ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: __lowerCamelCase = remaining_time[j] __lowerCamelCase = j __lowerCamelCase = True if not check: increment_time += 1 continue remaining_time[short] -= 1 __lowerCamelCase = remaining_time[short] if minm == 0: __lowerCamelCase = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 __lowerCamelCase = False # Find finish time of current process __lowerCamelCase = increment_time + 1 # Calculate waiting time __lowerCamelCase = finish_time - arrival_time[short] __lowerCamelCase = finar - burst_time[short] if waiting_time[short] < 0: __lowerCamelCase = 0 # Increment time increment_time += 1 return waiting_time def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> list[int]: __lowerCamelCase = [0] * no_of_processes for i in range(UpperCamelCase__ ): __lowerCamelCase = burst_time[i] + waiting_time[i] return turn_around_time def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> None: __lowerCamelCase = 0 __lowerCamelCase = 0 for i in range(UpperCamelCase__ ): __lowerCamelCase = total_waiting_time + waiting_time[i] __lowerCamelCase = total_turn_around_time + turn_around_time[i] print(f"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print('''Average turn around time =''' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("Enter how many process you want to analyze") __UpperCAmelCase =int(input()) __UpperCAmelCase =[0] * no_of_processes __UpperCAmelCase =[0] * no_of_processes __UpperCAmelCase =list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("Enter the arrival time and burst time for process:--" + str(i + 1)) __UpperCAmelCase , __UpperCAmelCase =map(int, input().split()) __UpperCAmelCase =calculate_waitingtime(arrival_time, burst_time, no_of_processes) __UpperCAmelCase =burst_time __UpperCAmelCase =no_of_processes __UpperCAmelCase =waiting_time __UpperCAmelCase =calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) __UpperCAmelCase =pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ "Process", "BurstTime", "ArrivalTime", "WaitingTime", "TurnAroundTime", ], ) # Printing the dataFrame pd.set_option("display.max_rows", fcfs.shape[0] + 1) print(fcfs)
67
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class a__ : def __init__( self : Union[str, Any] , a : Union[str, Any] , a : Tuple=13 , a : Optional[Any]=7 , a : List[Any]=True , a : Optional[Any]=True , a : Any=True , a : Union[str, Any]=99 , a : Any=32 , a : int=5 , a : Optional[int]=4 , a : Union[str, Any]=37 , a : Optional[Any]="gelu" , a : Union[str, Any]=0.1 , a : Any=0.1 , a : Optional[int]=5_12 , a : int=16 , a : Optional[Any]=2 , a : Union[str, Any]=0.02 , a : Any=3 , a : Dict=4 , a : Any=None , ): """simple docstring""" __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope __lowerCamelCase = self.vocab_size - 1 def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __lowerCamelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : Dict , a : List[str] , a : Tuple , a : List[Any] , *a : Union[str, Any] ): """simple docstring""" __lowerCamelCase = OpenAIGPTModel(config=a ) model.to(a ) model.eval() __lowerCamelCase = model(a , token_type_ids=a , head_mask=a ) __lowerCamelCase = model(a , token_type_ids=a ) __lowerCamelCase = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : Union[str, Any] , a : Dict , a : Union[str, Any] , a : Tuple , *a : Union[str, Any] ): """simple docstring""" __lowerCamelCase = OpenAIGPTLMHeadModel(a ) model.to(a ) model.eval() __lowerCamelCase = model(a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : Tuple , a : Optional[int] , a : Union[str, Any] , a : Optional[Any] , *a : Optional[Any] ): """simple docstring""" __lowerCamelCase = OpenAIGPTDoubleHeadsModel(a ) model.to(a ) model.eval() __lowerCamelCase = model(a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : int , a : Dict , a : Optional[Any] , a : str , *a : int ): """simple docstring""" __lowerCamelCase = self.num_labels __lowerCamelCase = OpenAIGPTForSequenceClassification(a ) model.to(a ) model.eval() __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = model(a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class a__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCamelCase : List[str] =( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowerCamelCase : str =( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowerCamelCase : Optional[int] =( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : Tuple , a : Optional[int] , a : int , a : str , a : Any ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : int , a : Optional[int] , a : str=False ): """simple docstring""" __lowerCamelCase = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __lowerCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=a , ) __lowerCamelCase = inputs_dict['''labels'''] __lowerCamelCase = inputs_dict['''labels'''] __lowerCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=a , ) __lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = OpenAIGPTModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=a , n_embd=37 ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*a ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*a ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*a ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = OpenAIGPTModel.from_pretrained(a ) self.assertIsNotNone(a ) @require_torch class a__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(a ) __lowerCamelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=a ) # the president is __lowerCamelCase = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the __lowerCamelCase = model.generate(a , do_sample=a ) self.assertListEqual(output_ids[0].tolist() , a )
67
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __A ='''src/diffusers''' __A ='''.''' # This is to make sure the diffusers module imported is the one in the repo. __A =importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) __A =spec.loader.load_module() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): return line.startswith(lowerCamelCase__ ) or len(lowerCamelCase__ ) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$" , lowerCamelCase__ ) is not None def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = object_name.split("." ) lowerCamelCase_ = 0 # First let's find the module where our object lives. lowerCamelCase_ = parts[i] while i < len(lowerCamelCase__ ) and not os.path.isfile(os.path.join(lowerCamelCase__ , F'{module}.py' ) ): i += 1 if i < len(lowerCamelCase__ ): lowerCamelCase_ = os.path.join(lowerCamelCase__ , parts[i] ) if i >= len(lowerCamelCase__ ): raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(lowerCamelCase__ , F'{module}.py' ) , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCamelCase_ = f.readlines() # Now let's find the class / func in the code! lowerCamelCase_ = "" lowerCamelCase_ = 0 for name in parts[i + 1 :]: while ( line_index < len(lowerCamelCase__ ) and re.search(rF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowerCamelCase__ ): raise ValueError(F' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). lowerCamelCase_ = line_index while line_index < len(lowerCamelCase__ ) and _should_continue(lines[line_index] , lowerCamelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowerCamelCase_ = lines[start_index:line_index] return "".join(lowerCamelCase__ ) __A =re.compile(R'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') __A =re.compile(R'''^\s*(\S+)->(\S+)(\s+.*|$)''') __A =re.compile(R'''<FILL\s+[^>]*>''') def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = code.split("\n" ) lowerCamelCase_ = 0 while idx < len(lowerCamelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowerCamelCase__ ): return re.search(r"^(\s*)\S" , lines[idx] ).groups()[0] return "" def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = len(get_indent(lowerCamelCase__ ) ) > 0 if has_indent: lowerCamelCase_ = F'class Bla:\n{code}' lowerCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=lowerCamelCase__ ) lowerCamelCase_ = black.format_str(lowerCamelCase__ , mode=lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = style_docstrings_in_code(lowerCamelCase__ ) return result[len("class Bla:\n" ) :] if has_indent else result def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__=False ): with open(lowerCamelCase__ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCamelCase_ = f.readlines() lowerCamelCase_ = [] lowerCamelCase_ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowerCamelCase__ ): lowerCamelCase_ = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = search.groups() lowerCamelCase_ = find_code_in_diffusers(lowerCamelCase__ ) lowerCamelCase_ = get_indent(lowerCamelCase__ ) lowerCamelCase_ = line_index + 1 if indent == theoretical_indent else line_index + 2 lowerCamelCase_ = theoretical_indent lowerCamelCase_ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. lowerCamelCase_ = True while line_index < len(lowerCamelCase__ ) and should_continue: line_index += 1 if line_index >= len(lowerCamelCase__ ): break lowerCamelCase_ = lines[line_index] lowerCamelCase_ = _should_continue(lowerCamelCase__ , lowerCamelCase__ ) and re.search(F'^{indent}# End copy' , lowerCamelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowerCamelCase_ = lines[start_index:line_index] lowerCamelCase_ = "".join(lowerCamelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies lowerCamelCase_ = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(lowerCamelCase__ ) is None] lowerCamelCase_ = "\n".join(lowerCamelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowerCamelCase__ ) > 0: lowerCamelCase_ = replace_pattern.replace("with" , "" ).split("," ) lowerCamelCase_ = [_re_replace_pattern.search(lowerCamelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = pattern.groups() lowerCamelCase_ = re.sub(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if option.strip() == "all-casing": lowerCamelCase_ = re.sub(obja.lower() , obja.lower() , lowerCamelCase__ ) lowerCamelCase_ = re.sub(obja.upper() , obja.upper() , lowerCamelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line lowerCamelCase_ = blackify(lines[start_index - 1] + theoretical_code ) lowerCamelCase_ = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: lowerCamelCase_ = lines[:start_index] + [theoretical_code] + lines[line_index:] lowerCamelCase_ = start_index + 1 if overwrite and len(lowerCamelCase__ ) > 0: # Warn the user a file has been modified. print(F'Detected changes, rewriting {filename}.' ) with open(lowerCamelCase__ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lowerCamelCase__ ) return diffs def lowerCamelCase_ ( lowerCamelCase__ = False ): lowerCamelCase_ = glob.glob(os.path.join(lowerCamelCase__ , "**/*.py" ) , recursive=lowerCamelCase__ ) lowerCamelCase_ = [] for filename in all_files: lowerCamelCase_ = is_copy_consistent(lowerCamelCase__ , lowerCamelCase__ ) diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(lowerCamelCase__ ) > 0: lowerCamelCase_ = "\n".join(lowerCamelCase__ ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": __A =argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __A =parser.parse_args() check_copies(args.fix_and_overwrite)
47
import copy import re class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = 'hp' lowerCAmelCase__ = {} lowerCAmelCase__ = None @classmethod def SCREAMING_SNAKE_CASE_( cls , lowercase , lowercase ) -> Tuple: lowerCamelCase_ = prefix lowerCamelCase_ = defaults cls.build_naming_info() @staticmethod def SCREAMING_SNAKE_CASE_( lowercase , lowercase ) -> Optional[Any]: if len(lowercase ) == 0: return "" lowerCamelCase_ = None if any(char.isdigit() for char in word ): raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(lowercase ) + 1 ): lowerCamelCase_ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: lowerCamelCase_ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowercase ): lowerCamelCase_ = "" while integer != 0: lowerCamelCase_ = chr(ord("A" ) + integer % 10 ) + s integer //= 10 return s lowerCamelCase_ = 0 while True: lowerCamelCase_ = word + "#" + int_to_alphabetic(lowercase ) if sword in info["reverse_short_word"]: continue else: lowerCamelCase_ = sword break lowerCamelCase_ = short_word lowerCamelCase_ = word return short_word @staticmethod def SCREAMING_SNAKE_CASE_( lowercase , lowercase ) -> int: lowerCamelCase_ = param_name.split("_" ) lowerCamelCase_ = [TrialShortNamer.shortname_for_word(lowercase , lowercase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name lowerCamelCase_ = ["", "_"] for separator in separators: lowerCamelCase_ = separator.join(lowercase ) if shortname not in info["reverse_short_param"]: lowerCamelCase_ = shortname lowerCamelCase_ = param_name return shortname return param_name @staticmethod def SCREAMING_SNAKE_CASE_( lowercase , lowercase ) -> Optional[Any]: lowerCamelCase_ = TrialShortNamer.shortname_for_key(lowercase , lowercase ) lowerCamelCase_ = short_name lowerCamelCase_ = param_name @classmethod def SCREAMING_SNAKE_CASE_( cls ) -> Dict: if cls.NAMING_INFO is not None: return lowerCamelCase_ = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } lowerCamelCase_ = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(lowercase , lowercase ) lowerCamelCase_ = info @classmethod def SCREAMING_SNAKE_CASE_( cls , lowercase ) -> Optional[int]: cls.build_naming_info() assert cls.PREFIX is not None lowerCamelCase_ = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'You should provide a default value for the param name {k} with value {v}' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue lowerCamelCase_ = cls.NAMING_INFO["short_param"][k] if isinstance(lowercase , lowercase ): lowerCamelCase_ = 1 if v else 0 lowerCamelCase_ = "" if isinstance(lowercase , (int, float) ) else "-" lowerCamelCase_ = f'{key}{sep}{v}' name.append(lowercase ) return "_".join(lowercase ) @classmethod def SCREAMING_SNAKE_CASE_( cls , lowercase ) -> List[Any]: lowerCamelCase_ = repr[len(cls.PREFIX ) + 1 :] if repr == "": lowerCamelCase_ = [] else: lowerCamelCase_ = repr.split("_" ) lowerCamelCase_ = {} for value in values: if "-" in value: lowerCamelCase_ , lowerCamelCase_ = value.split("-" ) else: lowerCamelCase_ = re.sub("[0-9.]" , "" , lowercase ) lowerCamelCase_ = float(re.sub("[^0-9.]" , "" , lowercase ) ) lowerCamelCase_ = cls.NAMING_INFO["reverse_short_param"][p_k] lowerCamelCase_ = p_v for k in cls.DEFAULTS: if k not in parameters: lowerCamelCase_ = cls.DEFAULTS[k] return parameters
47
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCamelCase_ : str = logging.get_logger(__name__) lowerCamelCase_ : Any = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "trajectory_transformer" __lowerCAmelCase = ["past_key_values"] __lowerCAmelCase = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , __A=100 , __A=5 , __A=1 , __A=1 , __A=249 , __A=6 , __A=17 , __A=25 , __A=4 , __A=4 , __A=128 , __A=0.1 , __A=0.1 , __A=0.1 , __A=0.0_006 , __A=512 , __A=0.02 , __A=1E-1_2 , __A=1 , __A=True , __A=1 , __A=5_0256 , __A=5_0256 , **__A , ) -> List[Any]: a =vocab_size a =action_weight a =reward_weight a =value_weight a =max_position_embeddings a =block_size a =action_dim a =observation_dim a =transition_dim a =learning_rate a =n_layer a =n_head a =n_embd a =embd_pdrop a =attn_pdrop a =resid_pdrop a =initializer_range a =layer_norm_eps a =kaiming_initializer_range a =use_cache super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A )
81
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCAmelCase = logging.get_logger(__name__) class UpperCAmelCase_ ( _lowercase): snake_case__ = ['''input_values''', '''padding_mask'''] def __init__( self : Optional[Any] , __UpperCamelCase : int = 1 , __UpperCamelCase : int = 2_4000 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = None , __UpperCamelCase : float = None , **__UpperCamelCase : Optional[Any] , ) -> Optional[int]: super().__init__(feature_size=__UpperCamelCase , sampling_rate=__UpperCamelCase , padding_value=__UpperCamelCase , **__UpperCamelCase ) _UpperCamelCase = chunk_length_s _UpperCamelCase = overlap @property def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self : Union[str, Any] , __UpperCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __UpperCamelCase : Optional[Union[bool, str, PaddingStrategy]] = None , __UpperCamelCase : Optional[bool] = False , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Optional[int] = None , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if padding and truncation: raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' ) elif padding is None: # by default let's pad the inputs _UpperCamelCase = True _UpperCamelCase = bool( isinstance(__UpperCamelCase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCamelCase = [np.asarray(__UpperCamelCase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__UpperCamelCase , np.ndarray ): _UpperCamelCase = np.asarray(__UpperCamelCase , dtype=np.floataa ) elif isinstance(__UpperCamelCase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _UpperCamelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _UpperCamelCase = [np.asarray(__UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(__UpperCamelCase ): if example.ndim > 2: raise ValueError(F'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'''Expected stereo audio but example has {example.shape[-1]} channels''' ) _UpperCamelCase = None _UpperCamelCase = BatchFeature({'''input_values''': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _UpperCamelCase = min(array.shape[0] for array in raw_audio ) _UpperCamelCase = int(np.floor(max_length / self.chunk_stride ) ) _UpperCamelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _UpperCamelCase = max(array.shape[0] for array in raw_audio ) _UpperCamelCase = int(np.ceil(max_length / self.chunk_stride ) ) _UpperCamelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _UpperCamelCase = '''max_length''' else: _UpperCamelCase = input_values # normal padding on batch if padded_inputs is None: _UpperCamelCase = self.pad( __UpperCamelCase , max_length=__UpperCamelCase , truncation=__UpperCamelCase , padding=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ) if padding: _UpperCamelCase = padded_inputs.pop('''attention_mask''' ) _UpperCamelCase = [] for example in padded_inputs.pop('''input_values''' ): if self.feature_size == 1: _UpperCamelCase = example[..., None] input_values.append(example.T ) _UpperCamelCase = input_values if return_tensors is not None: _UpperCamelCase = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs
256
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) _UpperCAmelCase = get_activation('gelu' ) self.assertTrue(torch.allclose(gelu_python(_SCREAMING_SNAKE_CASE ) , torch_builtin(_SCREAMING_SNAKE_CASE ) ) ) self.assertFalse(torch.allclose(gelu_python(_SCREAMING_SNAKE_CASE ) , gelu_new(_SCREAMING_SNAKE_CASE ) ) ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) _UpperCAmelCase = get_activation('gelu' ) _UpperCAmelCase = get_activation('gelu_10' ) _UpperCAmelCase = torch_builtin(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = geluaa(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(_SCREAMING_SNAKE_CASE ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" get_activation('gelu' ) get_activation('gelu_10' ) get_activation('gelu_fast' ) get_activation('gelu_new' ) get_activation('gelu_python' ) get_activation('gelu_pytorch_tanh' ) get_activation('linear' ) get_activation('mish' ) get_activation('quick_gelu' ) get_activation('relu' ) get_activation('sigmoid' ) get_activation('silu' ) get_activation('swish' ) get_activation('tanh' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): get_activation('bogus' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): get_activation(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = get_activation('gelu' ) _UpperCAmelCase = 1 _UpperCAmelCase = get_activation('gelu' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = acta.a
185
import math import random def lowerCAmelCase__ ( a__: float , a__: bool = False ) -> float: '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowerCAmelCase__ :Optional[Any] = 0.02 def lowerCAmelCase__ ( a__: int , a__: int ) -> float: '''simple docstring''' _UpperCAmelCase = float(2 * (random.randint(1 , 1_0_0 )) - 1 ) for _ in range(a__ ): # Forward propagation _UpperCAmelCase = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? _UpperCAmelCase = (expected / 1_0_0) - layer_a # Error delta _UpperCAmelCase = layer_1_error * sigmoid_function(a__ , a__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_0_0 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ :List[Any] = int(input('''Expected value: ''')) lowerCAmelCase__ :Any = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
185
1
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow __lowerCAmelCase : int = False class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : List[Any]=32 ) -> List[str]: """simple docstring""" set_seed(0 ) __magic_name__ = UNetaDModel(sample_size=UpperCamelCase__ , in_channels=3 , out_channels=3 ) __magic_name__ = torch.optim.SGD(model.parameters() , lr=0.0001 ) return model, optimizer @slow def _lowercase ( self : Any ) -> List[Any]: """simple docstring""" __magic_name__ = """cpu""" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable __magic_name__ = DDPMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=UpperCamelCase__ , ) __magic_name__ = DDIMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=UpperCamelCase__ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) __magic_name__ = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(UpperCamelCase__ ) for _ in range(4 )] __magic_name__ = [torch.randn((4, 3, 32, 32) ).to(UpperCamelCase__ ) for _ in range(4 )] __magic_name__ = [torch.randint(0 , 1000 , (4,) ).long().to(UpperCamelCase__ ) for _ in range(4 )] # train with a DDPM scheduler __magic_name__ , __magic_name__ = self.get_model_optimizer(resolution=32 ) model.train().to(UpperCamelCase__ ) for i in range(4 ): optimizer.zero_grad() __magic_name__ = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) __magic_name__ = model(UpperCamelCase__ , timesteps[i] ).sample __magic_name__ = torch.nn.functional.mse_loss(UpperCamelCase__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM __magic_name__ , __magic_name__ = self.get_model_optimizer(resolution=32 ) model.train().to(UpperCamelCase__ ) for i in range(4 ): optimizer.zero_grad() __magic_name__ = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) __magic_name__ = model(UpperCamelCase__ , timesteps[i] ).sample __magic_name__ = torch.nn.functional.mse_loss(UpperCamelCase__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-5 ) ) self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-5 ) )
88
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : List[str] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[Any] ): """simple docstring""" warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
346
0
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record lowerCAmelCase = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' lowerCAmelCase = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' lowerCAmelCase = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return float((preds == labels).mean() ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="binary" ): """simple docstring""" lowercase__ = simple_accuracy(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ = float(fa_score(y_true=lowerCamelCase__ , y_pred=lowerCamelCase__ , average=lowerCamelCase__ ) ) return { "accuracy": acc, "f1": fa, } def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = {} for id_pred, label in zip(lowerCamelCase__ , lowerCamelCase__ ): lowercase__ = f'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' lowercase__ = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowercase__ = [(pred, label)] lowercase__ = [], [] for question, preds_labels in question_map.items(): lowercase__ = zip(*lowerCamelCase__ ) lowercase__ = fa_score(y_true=lowerCamelCase__ , y_pred=lowerCamelCase__ , average='''macro''' ) fas.append(lowerCamelCase__ ) lowercase__ = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase__ ) ) ems.append(lowerCamelCase__ ) lowercase__ = float(sum(lowerCamelCase__ ) / len(lowerCamelCase__ ) ) lowercase__ = sum(lowerCamelCase__ ) / len(lowerCamelCase__ ) lowercase__ = float(fa_score(y_true=lowerCamelCase__ , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: Tuple ) -> Optional[int]: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def lowerCamelCase_ ( self: int ) -> int: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def lowerCamelCase_ ( self: str , UpperCamelCase_: Tuple , UpperCamelCase_: Dict ) -> Any: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowerCamelCase , _lowerCamelCase )} elif self.config_name == "cb": return acc_and_fa(_lowerCamelCase , _lowerCamelCase , fa_avg='''macro''' ) elif self.config_name == "record": lowercase__ = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] lowercase__ = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(_lowerCamelCase , _lowerCamelCase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowerCamelCase , _lowerCamelCase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
354
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
93
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } a : List[Any] = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCAmelCase : Tuple = "lm_head" UpperCAmelCase : List[Any] = getattr(_A , _A ) if weight_type is not None: UpperCAmelCase : List[Any] = getattr(_A , _A ).shape else: UpperCAmelCase : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCAmelCase : Any = value elif weight_type == "weight_g": UpperCAmelCase : List[Any] = value elif weight_type == "weight_v": UpperCAmelCase : Any = value elif weight_type == "bias": UpperCAmelCase : int = value else: UpperCAmelCase : List[Any] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : int = [] UpperCAmelCase : Any = fairseq_model.state_dict() UpperCAmelCase : List[Any] = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : int = False if "conv_layers" in name: load_conv_layer( _A , _A , _A , _A , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase : Union[str, Any] = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase : Union[str, Any] = True if "*" in mapped_key: UpperCAmelCase : Dict = name.split(_A )[0].split("." )[-2] UpperCAmelCase : Union[str, Any] = mapped_key.replace("*" , _A ) if "weight_g" in name: UpperCAmelCase : Tuple = "weight_g" elif "weight_v" in name: UpperCAmelCase : Optional[Any] = "weight_v" elif "bias" in name: UpperCAmelCase : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : int = "weight" else: UpperCAmelCase : Optional[int] = None set_recursively(_A , _A , _A , _A , _A , _A ) continue if not is_used: unused_weights.append(_A ) logger.warning(F"Unused weights: {unused_weights}" ) def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : int = full_name.split("conv_layers." )[-1] UpperCAmelCase : Union[str, Any] = name.split("." ) UpperCAmelCase : Tuple = int(items[0] ) UpperCAmelCase : Any = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCAmelCase : Dict = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCAmelCase : Union[str, Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) UpperCAmelCase : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) UpperCAmelCase : Optional[int] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_A ) @torch.no_grad() def lowercase ( __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__=True ): '''simple docstring''' if config_path is not None: UpperCAmelCase : List[str] = UniSpeechConfig.from_pretrained(_A ) else: UpperCAmelCase : Optional[Any] = UniSpeechConfig() if is_finetuned: if dict_path: UpperCAmelCase : List[Any] = Dictionary.load_from_json(_A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase : Any = target_dict.pad_index UpperCAmelCase : Tuple = target_dict.bos_index UpperCAmelCase : Tuple = target_dict.eos_index UpperCAmelCase : Any = len(target_dict.symbols ) UpperCAmelCase : Dict = os.path.join(_A , "vocab.json" ) if not os.path.isdir(_A ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_A ) ) return os.makedirs(_A , exist_ok=_A ) UpperCAmelCase : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase : Any = 42 UpperCAmelCase : str = 43 with open(_A , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_A , _A ) UpperCAmelCase : str = WavaVecaPhonemeCTCTokenizer( _A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_A , ) UpperCAmelCase : Tuple = True if config.feat_extract_norm == "layer" else False UpperCAmelCase : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_A , return_attention_mask=_A , ) UpperCAmelCase : Union[str, Any] = WavaVecaProcessor(feature_extractor=_A , tokenizer=_A ) processor.save_pretrained(_A ) UpperCAmelCase : int = UniSpeechForCTC(_A ) else: UpperCAmelCase : List[Any] = UniSpeechForPreTraining(_A ) if is_finetuned: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) UpperCAmelCase : List[str] = model[0].eval() recursively_load_weights(_A , _A , _A ) hf_unispeech.save_pretrained(_A ) if __name__ == "__main__": a : str = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) a : str = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
311
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self, lowercase_, lowercase_=13, lowercase_=7, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=False, lowercase_=False, lowercase_=False, lowercase_=2, lowercase_=99, lowercase_=0, lowercase_=32, lowercase_=5, lowercase_=4, lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=12, lowercase_=2, lowercase_=0.02, lowercase_=3, lowercase_=4, lowercase_="last", lowercase_=None, lowercase_=None, ) -> List[Any]: """simple docstring""" a__ =parent a__ =batch_size a__ =seq_length a__ =is_training a__ =use_input_lengths a__ =use_token_type_ids a__ =use_labels a__ =gelu_activation a__ =sinusoidal_embeddings a__ =causal a__ =asm a__ =n_langs a__ =vocab_size a__ =n_special a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =max_position_embeddings a__ =type_vocab_size a__ =type_sequence_label_size a__ =initializer_range a__ =num_labels a__ =num_choices a__ =summary_type a__ =use_proj a__ =scope def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) a__ =random_attention_mask([self.batch_size, self.seq_length] ) a__ =None if self.use_input_lengths: a__ =( ids_tensor([self.batch_size], vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length a__ =None if self.use_token_type_ids: a__ =ids_tensor([self.batch_size, self.seq_length], self.n_langs ) a__ =None a__ =None a__ =None if self.use_labels: a__ =ids_tensor([self.batch_size], self.type_sequence_label_size ) a__ =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) a__ =ids_tensor([self.batch_size], 2 ).float() a__ =ids_tensor([self.batch_size], self.num_choices ) a__ =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Dict: """simple docstring""" a__ =FlaubertModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, lengths=lowercase_, langs=lowercase_ ) a__ =model(lowercase_, langs=lowercase_ ) a__ =model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> str: """simple docstring""" a__ =FlaubertWithLMHeadModel(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, token_type_ids=lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Dict: """simple docstring""" a__ =FlaubertForQuestionAnsweringSimple(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_ ) a__ =model(lowercase_, start_positions=lowercase_, end_positions=lowercase_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Optional[Any]: """simple docstring""" a__ =FlaubertForQuestionAnswering(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_ ) a__ =model( lowercase_, start_positions=lowercase_, end_positions=lowercase_, cls_index=lowercase_, is_impossible=lowercase_, p_mask=lowercase_, ) a__ =model( lowercase_, start_positions=lowercase_, end_positions=lowercase_, cls_index=lowercase_, is_impossible=lowercase_, ) ((a__), ) =result_with_labels.to_tuple() a__ =model(lowercase_, start_positions=lowercase_, end_positions=lowercase_ ) ((a__), ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape, () ) self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Optional[Any]: """simple docstring""" a__ =FlaubertForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_ ) a__ =model(lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Optional[int]: """simple docstring""" a__ =self.num_labels a__ =FlaubertForTokenClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Dict: """simple docstring""" a__ =self.num_choices a__ =FlaubertForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() a__ =input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() a__ =token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() a__ =input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() a__ =model( lowercase_, attention_mask=lowercase_, token_type_ids=lowercase_, labels=lowercase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" a__ =self.prepare_config_and_inputs() ( ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ) =config_and_inputs a__ ={ '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : str = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase__ : Dict = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_=False ) -> str: """simple docstring""" a__ =super()._prepare_for_class(lowercase_, lowercase_, return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": a__ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowercase_ ) a__ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowercase_ ) return inputs_dict def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" a__ =FlaubertModelTester(self ) a__ =ConfigTester(self, config_class=lowercase_, emb_dim=37 ) def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowercase_ ) def _UpperCAmelCase ( self ) -> str: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowercase_ ) def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowercase_ ) def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowercase_ ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowercase_ ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowercase_ ) def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowercase_ ) @slow def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ =FlaubertModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @slow @require_torch_gpu def _UpperCAmelCase ( self ) -> int: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return a__ =True a__ =model_class(config=lowercase_ ) a__ =self._prepare_for_class(lowercase_, lowercase_ ) a__ =torch.jit.trace( lowercase_, (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase_, os.path.join(lowercase_, '''traced_model.pt''' ) ) a__ =torch.jit.load(os.path.join(lowercase_, '''traced_model.pt''' ), map_location=lowercase_ ) loaded(inputs_dict['''input_ids'''].to(lowercase_ ), inputs_dict['''attention_mask'''].to(lowercase_ ) ) @require_torch class __magic_name__ ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" a__ =FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) a__ =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): a__ =model(lowercase_ )[0] a__ =torch.Size((1, 11, 768) ) self.assertEqual(output.shape, lowercase_ ) a__ =torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], lowercase_, atol=1E-4 ) )
188
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = 'codegen' UpperCAmelCase_ = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , lowercase__ : Any=50_400 , lowercase__ : int=2_048 , lowercase__ : Tuple=2_048 , lowercase__ : Optional[Any]=4_096 , lowercase__ : Dict=28 , lowercase__ : List[str]=16 , lowercase__ : Union[str, Any]=64 , lowercase__ : str=None , lowercase__ : Tuple="gelu_new" , lowercase__ : str=0.0 , lowercase__ : str=0.0 , lowercase__ : Optional[Any]=0.0 , lowercase__ : Any=1e-5 , lowercase__ : Dict=0.02 , lowercase__ : str=True , lowercase__ : str=50_256 , lowercase__ : Optional[int]=50_256 , lowercase__ : int=False , **lowercase__ : Optional[int] , ): '''simple docstring''' lowerCAmelCase__ = vocab_size lowerCAmelCase__ = n_ctx lowerCAmelCase__ = n_positions lowerCAmelCase__ = n_embd lowerCAmelCase__ = n_layer lowerCAmelCase__ = n_head lowerCAmelCase__ = n_inner lowerCAmelCase__ = rotary_dim lowerCAmelCase__ = activation_function lowerCAmelCase__ = resid_pdrop lowerCAmelCase__ = embd_pdrop lowerCAmelCase__ = attn_pdrop lowerCAmelCase__ = layer_norm_epsilon lowerCAmelCase__ = initializer_range lowerCAmelCase__ = use_cache lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = eos_token_id super().__init__( bos_token_id=lowercase__ , eos_token_id=lowercase__ , tie_word_embeddings=lowercase__ , **lowercase__) class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , lowercase__ : PretrainedConfig , lowercase__ : str = "default" , lowercase__ : List[PatchingSpec] = None , lowercase__ : bool = False , ): '''simple docstring''' super().__init__(lowercase__ , task=lowercase__ , patching_specs=lowercase__ , use_past=lowercase__) if not getattr(self._config , 'pad_token_id' , lowercase__): # TODO: how to do that better? lowerCAmelCase__ = 0 @property def __snake_case ( self : str): '''simple docstring''' lowerCAmelCase__ = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}}) if self.use_past: self.fill_with_past_key_values_(lowercase__ , direction='inputs') lowerCAmelCase__ = {0: 'batch', 1: 'past_sequence + sequence'} else: lowerCAmelCase__ = {0: 'batch', 1: 'sequence'} return common_inputs @property def __snake_case ( self : List[Any]): '''simple docstring''' return self._config.n_layer @property def __snake_case ( self : Optional[int]): '''simple docstring''' return self._config.n_head def __snake_case ( self : Union[str, Any] , lowercase__ : PreTrainedTokenizer , lowercase__ : int = -1 , lowercase__ : int = -1 , lowercase__ : bool = False , lowercase__ : Optional[TensorType] = None , ): '''simple docstring''' lowerCAmelCase__ = super(lowercase__ , self).generate_dummy_inputs( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__) # We need to order the input in the way they appears in the forward() lowerCAmelCase__ = OrderedDict({'input_ids': common_inputs['input_ids']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch lowerCAmelCase__ , lowerCAmelCase__ = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowerCAmelCase__ = seqlen + 2 lowerCAmelCase__ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase__ = [ (torch.zeros(lowercase__), torch.zeros(lowercase__)) for _ in range(self.num_layers) ] lowerCAmelCase__ = common_inputs['attention_mask'] if self.use_past: lowerCAmelCase__ = ordered_inputs['attention_mask'].dtype lowerCAmelCase__ = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowercase__ , lowercase__ , dtype=lowercase__)] , dim=1) return ordered_inputs @property def __snake_case ( self : Dict): '''simple docstring''' return 13
361
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = 'huggingface/label-files' lowerCAmelCase__ = 'imagenet-1k-id2label.json' lowerCAmelCase__ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase__ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowerCAmelCase__ = {v: k for k, v in idalabel.items()} lowerCAmelCase__ = 'std_conv' if 'bit' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowerCAmelCase__ = BitConfig( conv_layer=lowerCAmelCase__ , num_labels=1_0_0_0 , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ , ) return config def __lowerCamelCase ( lowerCAmelCase__ ): if "stem.conv" in name: lowerCAmelCase__ = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: lowerCAmelCase__ = name.replace('blocks' , 'layers' ) if "head.fc" in name: lowerCAmelCase__ = name.replace('head.fc' , 'classifier.1' ) if name.startswith('norm' ): lowerCAmelCase__ = 'bit.' + name if "bit" not in name and "classifier" not in name: lowerCAmelCase__ = 'bit.encoder.' + name return name def __lowerCamelCase ( ): lowerCAmelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase__ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): lowerCAmelCase__ = get_config(lowerCAmelCase__ ) # load original model from timm lowerCAmelCase__ = create_model(lowerCAmelCase__ , pretrained=lowerCAmelCase__ ) timm_model.eval() # load state_dict of original model lowerCAmelCase__ = timm_model.state_dict() for key in state_dict.copy().keys(): lowerCAmelCase__ = state_dict.pop(lowerCAmelCase__ ) lowerCAmelCase__ = val.squeeze() if 'head' in key else val # load HuggingFace model lowerCAmelCase__ = BitForImageClassification(lowerCAmelCase__ ) model.eval() model.load_state_dict(lowerCAmelCase__ ) # create image processor lowerCAmelCase__ = create_transform(**resolve_data_config({} , model=lowerCAmelCase__ ) ) lowerCAmelCase__ = transform.transforms lowerCAmelCase__ = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } lowerCAmelCase__ = BitImageProcessor( do_resize=lowerCAmelCase__ , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCAmelCase__ , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=lowerCAmelCase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = transform(lowerCAmelCase__ ).unsqueeze(0 ) lowerCAmelCase__ = processor(lowerCAmelCase__ , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) # verify logits with torch.no_grad(): lowerCAmelCase__ = model(lowerCAmelCase__ ) lowerCAmelCase__ = outputs.logits print('Logits:' , logits[0, :3] ) print('Predicted class:' , model.config.idalabel[logits.argmax(-1 ).item()] ) lowerCAmelCase__ = timm_model(lowerCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase__ , outputs.logits , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(F"""Saving model {model_name} and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(F"""Pushing model {model_name} and processor to the hub""" ) model.push_to_hub(F"""ybelkada/{model_name}""" ) processor.push_to_hub(F"""ybelkada/{model_name}""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) lowerCAmelCase__ = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
119
0
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCamelCase : int = Mapping[str, np.ndarray] lowerCamelCase : Union[str, Any] = Mapping[str, Any] # Is a nested dict. lowerCamelCase : Dict = 0.0_1 @dataclasses.dataclass(frozen=A__ ) class A__ : A__ = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. A__ = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. A__ = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. A__ = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. A__ = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions A__ = None # Optional remark about the protein. Included as a comment in output PDB # files A__ = None # Templates used to generate this protein (prediction-only) A__ = None # Chain corresponding to each parent A__ = None def _lowerCAmelCase ( _UpperCamelCase : str ) -> Protein: """simple docstring""" _SCREAMING_SNAKE_CASE =r'(\[[A-Z]+\]\n)' _SCREAMING_SNAKE_CASE =[tag.strip() for tag in re.split(_UpperCamelCase , _UpperCamelCase ) if len(_UpperCamelCase ) > 0] _SCREAMING_SNAKE_CASE =zip(tags[0::2] , [l.split('\n' ) for l in tags[1::2]] ) _SCREAMING_SNAKE_CASE =["N", "CA", "C"] _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None for g in groups: if "[PRIMARY]" == g[0]: _SCREAMING_SNAKE_CASE =g[1][0].strip() for i in range(len(_UpperCamelCase ) ): if seq[i] not in residue_constants.restypes: _SCREAMING_SNAKE_CASE ='X' # FIXME: strings are immutable _SCREAMING_SNAKE_CASE =np.array( [residue_constants.restype_order.get(_UpperCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: _SCREAMING_SNAKE_CASE =[] for axis in range(3 ): tertiary.append(list(map(_UpperCamelCase , g[1][axis].split() ) ) ) _SCREAMING_SNAKE_CASE =np.array(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: _SCREAMING_SNAKE_CASE =np.array(list(map({'-': 0, '+': 1}.get , g[1][0].strip() ) ) ) _SCREAMING_SNAKE_CASE =np.zeros( ( len(_UpperCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=_UpperCamelCase , atom_mask=_UpperCamelCase , aatype=_UpperCamelCase , residue_index=np.arange(len(_UpperCamelCase ) ) , b_factors=_UpperCamelCase , ) def _lowerCAmelCase ( _UpperCamelCase : Protein , _UpperCamelCase : int = 0 ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}" ) _SCREAMING_SNAKE_CASE =prot.parents _SCREAMING_SNAKE_CASE =prot.parents_chain_index if parents is not None and parents_chain_index is not None: _SCREAMING_SNAKE_CASE =[p for i, p in zip(_UpperCamelCase , _UpperCamelCase ) if i == chain_id] if parents is None or len(_UpperCamelCase ) == 0: _SCREAMING_SNAKE_CASE =['N/A'] pdb_headers.append(f"PARENT {' '.join(_UpperCamelCase )}" ) return pdb_headers def _lowerCAmelCase ( _UpperCamelCase : Protein , _UpperCamelCase : str ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =pdb_str.split('\n' ) _SCREAMING_SNAKE_CASE =prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}" ) _SCREAMING_SNAKE_CASE =42 if prot.parents is not None and len(prot.parents ) > 0: _SCREAMING_SNAKE_CASE =[] if prot.parents_chain_index is not None: _SCREAMING_SNAKE_CASE ={} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(_UpperCamelCase ) , [] ) parent_dict[str(_UpperCamelCase )].append(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =max([int(_UpperCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): _SCREAMING_SNAKE_CASE =parent_dict.get(str(_UpperCamelCase ) , ['N/A'] ) parents_per_chain.append(_UpperCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: _SCREAMING_SNAKE_CASE =[['N/A']] def make_parent_line(_UpperCamelCase : Sequence[str] ) -> str: return f"PARENT {' '.join(_UpperCamelCase )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) _SCREAMING_SNAKE_CASE =0 for i, l in enumerate(_UpperCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(_UpperCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =parents_per_chain[chain_counter] else: _SCREAMING_SNAKE_CASE =['N/A'] out_pdb_lines.append(make_parent_line(_UpperCamelCase ) ) return "\n".join(_UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : Protein ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =residue_constants.restypes + ['X'] def res_atoa(_UpperCamelCase : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , 'UNK' ) _SCREAMING_SNAKE_CASE =residue_constants.atom_types _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =prot.atom_mask _SCREAMING_SNAKE_CASE =prot.aatype _SCREAMING_SNAKE_CASE =prot.atom_positions _SCREAMING_SNAKE_CASE =prot.residue_index.astype(np.intaa ) _SCREAMING_SNAKE_CASE =prot.b_factors _SCREAMING_SNAKE_CASE =prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('Invalid aatypes.' ) _SCREAMING_SNAKE_CASE =get_pdb_headers(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: pdb_lines.extend(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =aatype.shape[0] _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =string.ascii_uppercase _SCREAMING_SNAKE_CASE =None # Add all atom sites. for i in range(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(_UpperCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue _SCREAMING_SNAKE_CASE ='ATOM' _SCREAMING_SNAKE_CASE =atom_name if len(_UpperCamelCase ) == 4 else f" {atom_name}" _SCREAMING_SNAKE_CASE ='' _SCREAMING_SNAKE_CASE ='' _SCREAMING_SNAKE_CASE =1.00 _SCREAMING_SNAKE_CASE =atom_name[0] # Protein supports only C, N, O, S, this works. _SCREAMING_SNAKE_CASE ='' _SCREAMING_SNAKE_CASE ='A' if chain_index is not None: _SCREAMING_SNAKE_CASE =chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! _SCREAMING_SNAKE_CASE =( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_a:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(_UpperCamelCase ) atom_index += 1 _SCREAMING_SNAKE_CASE =i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =chain_index[i + 1] if should_terminate: # Close the chain. _SCREAMING_SNAKE_CASE ='TER' _SCREAMING_SNAKE_CASE =( f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(_UpperCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(_UpperCamelCase , _UpperCamelCase ) ) pdb_lines.append('END' ) pdb_lines.append('' ) return "\n".join(_UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : Protein ) -> np.ndarray: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _lowerCAmelCase ( _UpperCamelCase : FeatureDict , _UpperCamelCase : ModelOutput , _UpperCamelCase : Optional[np.ndarray] = None , _UpperCamelCase : Optional[np.ndarray] = None , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[Sequence[str]] = None , _UpperCamelCase : Optional[Sequence[int]] = None , ) -> Protein: """simple docstring""" return Protein( aatype=features['aatype'] , atom_positions=result['final_atom_positions'] , atom_mask=result['final_atom_mask'] , residue_index=features['residue_index'] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask'] ) , chain_index=_UpperCamelCase , remark=_UpperCamelCase , parents=_UpperCamelCase , parents_chain_index=_UpperCamelCase , )
47
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowerCamelCase : Optional[int] = False class A__ ( unittest.TestCase ): pass @slow @require_torch_gpu class A__ ( unittest.TestCase ): def A ( self : Tuple ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =pipe( image=_a , generator=_a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images _SCREAMING_SNAKE_CASE =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _SCREAMING_SNAKE_CASE =np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
47
1
'''simple docstring''' import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__) def UpperCamelCase_( snake_case : Optional[Any] , snake_case : str ): '''simple docstring''' snake_case_ = np.argmax(snake_case , axis=1 ) return np.sum(outputs == labels ) def UpperCamelCase_( snake_case : int ): '''simple docstring''' with open(snake_case , encoding="utf_8" ) as f: snake_case_ = csv.reader(snake_case ) snake_case_ = [] next(snake_case ) # skip the first line for line in tqdm(snake_case ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def UpperCamelCase_( snake_case : Union[str, Any] , snake_case : List[Any] , snake_case : Union[str, Any] , snake_case : List[Any] , snake_case : Tuple , snake_case : Optional[int] ): '''simple docstring''' snake_case_ = [] for dataset in encoded_datasets: snake_case_ = len(snake_case ) snake_case_ = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) snake_case_ = np.zeros((n_batch, 2) , dtype=np.intaa ) snake_case_ = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) snake_case_ = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(snake_case ): snake_case_ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] snake_case_ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] snake_case_ = with_conta snake_case_ = with_conta snake_case_ = len(snake_case ) - 1 snake_case_ = len(snake_case ) - 1 snake_case_ = with_conta snake_case_ = with_conta snake_case_ = mc_label snake_case_ = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(snake_case ) for t in all_inputs ) ) return tensor_datasets def UpperCamelCase_( ): '''simple docstring''' snake_case_ = argparse.ArgumentParser() parser.add_argument("--model_name" , type=snake_case , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=snake_case , type=snake_case , required=snake_case , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=snake_case , default="" ) parser.add_argument("--eval_dataset" , type=snake_case , default="" ) parser.add_argument("--seed" , type=snake_case , default=4_2 ) parser.add_argument("--num_train_epochs" , type=snake_case , default=3 ) parser.add_argument("--train_batch_size" , type=snake_case , default=8 ) parser.add_argument("--eval_batch_size" , type=snake_case , default=1_6 ) parser.add_argument("--adam_epsilon" , default=1e-8 , type=snake_case , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=snake_case , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=snake_case , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=snake_case , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=snake_case , default=6.25e-5 ) parser.add_argument("--warmup_steps" , default=0 , type=snake_case , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=snake_case , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=snake_case , default=0.01 ) parser.add_argument("--lm_coef" , type=snake_case , default=0.9 ) parser.add_argument("--n_valid" , type=snake_case , default=3_7_4 ) parser.add_argument("--server_ip" , type=snake_case , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=snake_case , default="" , help="Can be used for distant debugging." ) snake_case_ = parser.parse_args() print(snake_case ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=snake_case ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) snake_case_ = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) snake_case_ = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(snake_case , snake_case ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset snake_case_ = ["_start_", "_delimiter_", "_classify_"] snake_case_ = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(snake_case ) snake_case_ = tokenizer.convert_tokens_to_ids(snake_case ) snake_case_ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(snake_case ) ) model.to(snake_case ) # Load and encode the datasets def tokenize_and_encode(snake_case : Optional[Any] ): if isinstance(snake_case , snake_case ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(snake_case ) ) elif isinstance(snake_case , snake_case ): return obj return [tokenize_and_encode(snake_case ) for o in obj] logger.info("Encoding dataset..." ) snake_case_ = load_rocstories_dataset(args.train_dataset ) snake_case_ = load_rocstories_dataset(args.eval_dataset ) snake_case_ = (train_dataset, eval_dataset) snake_case_ = tokenize_and_encode(snake_case ) # Compute the max input length for the Transformer snake_case_ = model.config.n_positions // 2 - 2 snake_case_ = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) snake_case_ = min(snake_case , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders snake_case_ = pre_process_datasets(snake_case , snake_case , snake_case , *snake_case ) snake_case_ , snake_case_ = tensor_datasets[0], tensor_datasets[1] snake_case_ = TensorDataset(*snake_case ) snake_case_ = RandomSampler(snake_case ) snake_case_ = DataLoader(snake_case , sampler=snake_case , batch_size=args.train_batch_size ) snake_case_ = TensorDataset(*snake_case ) snake_case_ = SequentialSampler(snake_case ) snake_case_ = DataLoader(snake_case , sampler=snake_case , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: snake_case_ = args.max_steps snake_case_ = args.max_steps // (len(snake_case ) // args.gradient_accumulation_steps) + 1 else: snake_case_ = len(snake_case ) // args.gradient_accumulation_steps * args.num_train_epochs snake_case_ = list(model.named_parameters() ) snake_case_ = ["bias", "LayerNorm.bias", "LayerNorm.weight"] snake_case_ = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] snake_case_ = AdamW(snake_case , lr=args.learning_rate , eps=args.adam_epsilon ) snake_case_ = get_linear_schedule_with_warmup( snake_case , num_warmup_steps=args.warmup_steps , num_training_steps=snake_case ) if args.do_train: snake_case_ , snake_case_ , snake_case_ = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): snake_case_ = 0 snake_case_ = 0 snake_case_ = tqdm(snake_case , desc="Training" ) for step, batch in enumerate(snake_case ): snake_case_ = tuple(t.to(snake_case ) for t in batch ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = batch snake_case_ = model(snake_case , mc_token_ids=snake_case , lm_labels=snake_case , mc_labels=snake_case ) snake_case_ = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() snake_case_ = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 snake_case_ = "Training loss: {:.2e} lr: {:.2e}".format(snake_case , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer snake_case_ = model.module if hasattr(snake_case , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` snake_case_ = os.path.join(args.output_dir , snake_case ) snake_case_ = os.path.join(args.output_dir , snake_case ) torch.save(model_to_save.state_dict() , snake_case ) model_to_save.config.to_json_file(snake_case ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned snake_case_ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) snake_case_ = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(snake_case ) if args.do_eval: model.eval() snake_case_ , snake_case_ = 0, 0 snake_case_ , snake_case_ = 0, 0 for batch in tqdm(snake_case , desc="Evaluating" ): snake_case_ = tuple(t.to(snake_case ) for t in batch ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = batch with torch.no_grad(): snake_case_ , snake_case_ , snake_case_ , snake_case_ = model( snake_case , mc_token_ids=snake_case , lm_labels=snake_case , mc_labels=snake_case ) snake_case_ = mc_logits.detach().cpu().numpy() snake_case_ = mc_labels.to("cpu" ).numpy() snake_case_ = accuracy(snake_case , snake_case ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 snake_case_ = eval_loss / nb_eval_steps snake_case_ = eval_accuracy / nb_eval_examples snake_case_ = tr_loss / nb_tr_steps if args.do_train else None snake_case_ = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} snake_case_ = os.path.join(args.output_dir , "eval_results.txt" ) with open(snake_case , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , snake_case , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
92
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device _SCREAMING_SNAKE_CASE : Any = False class _snake_case ( unittest.TestCase ): pass @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion" ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) snake_case_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( image=a__ , generator=a__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images snake_case_ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) snake_case_ = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
92
1
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html A__ : Union[str, Any] = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Dict = PegasusConfig lowerCamelCase : List[Any] = {} lowerCamelCase : List[Any] = 'gelu' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=20 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , ) -> int: __lowerCamelCase : Optional[Any] = parent __lowerCamelCase : Tuple = batch_size __lowerCamelCase : Tuple = seq_length __lowerCamelCase : Dict = is_training __lowerCamelCase : Any = use_labels __lowerCamelCase : str = vocab_size __lowerCamelCase : Dict = hidden_size __lowerCamelCase : Union[str, Any] = num_hidden_layers __lowerCamelCase : Tuple = num_attention_heads __lowerCamelCase : Dict = intermediate_size __lowerCamelCase : Any = hidden_dropout_prob __lowerCamelCase : str = attention_probs_dropout_prob __lowerCamelCase : Optional[Any] = max_position_embeddings __lowerCamelCase : int = eos_token_id __lowerCamelCase : Any = pad_token_id __lowerCamelCase : Dict = bos_token_id def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __lowerCamelCase : str = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCamelCase : List[str] = np.concatenate([input_ids, eos_tensor] , axis=1 ) __lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase : int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowerCamelCase : Dict = prepare_pegasus_inputs_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return config, inputs_dict def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Union[str, Any] = 20 __lowerCamelCase : Optional[int] = model_class_name(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = model.encode(inputs_dict['input_ids'] ) __lowerCamelCase , __lowerCamelCase : List[str] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __lowerCamelCase : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) __lowerCamelCase : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowerCamelCase : str = model.decode( decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , decoder_position_ids=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase : Optional[Any] = model.decode( decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : List[Any] = model.decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}' ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase : List[str] = 20 __lowerCamelCase : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = model.encode(inputs_dict['input_ids'] ) __lowerCamelCase , __lowerCamelCase : Dict = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __lowerCamelCase : List[str] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __lowerCamelCase : int = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowerCamelCase : Dict = model.decode( decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , decoder_position_ids=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase : List[str] = model.decode( decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , decoder_position_ids=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : List[str] = model.decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}' ) def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[Any]=None , ) -> Optional[int]: if attention_mask is None: __lowerCamelCase : int = np.not_equal(UpperCAmelCase_ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __lowerCamelCase : List[Any] = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowerCamelCase : str = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowerCamelCase : Optional[int] = True lowerCamelCase : int = False lowerCamelCase : Optional[int] = False lowerCamelCase : Tuple = False def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = FlaxPegasusModelTester(self ) __lowerCamelCase : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def lowercase_ ( self ) -> List[str]: __lowerCamelCase , __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Dict: __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ ) @jax.jit def encode_jitted(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ): return model.encode(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) with self.subTest('JIT Enabled' ): __lowerCamelCase : int = encode_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCamelCase : Any = encode_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase : Any = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) __lowerCamelCase : Dict = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return model.decode( decoder_input_ids=SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , encoder_outputs=SCREAMING_SNAKE_CASE_ , ) with self.subTest('JIT Enabled' ): __lowerCamelCase : Dict = decode_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCamelCase : str = decode_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase_ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: __lowerCamelCase : List[str] = model_class_name.from_pretrained('google/pegasus-large' , from_pt=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = np.ones((1, 1) ) __lowerCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Dict = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum' ) __lowerCamelCase : Union[str, Any] = PegasusTokenizer.from_pretrained('google/pegasus-xsum' ) __lowerCamelCase : Dict = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] __lowerCamelCase : List[str] = [ 'California\'s largest electricity provider has turned off power to hundreds of thousands of customers.', 'Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.', ] __lowerCamelCase : str = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='np' , truncation=SCREAMING_SNAKE_CASE_ , max_length=5_12 , padding=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = model.generate(**SCREAMING_SNAKE_CASE_ , num_beams=2 ).sequences __lowerCamelCase : str = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) assert tgt_text == decoded
185
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> List[str]: __lowerCamelCase : Any = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) __lowerCamelCase : Tuple = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(SCREAMING_SNAKE_CASE_ ) from datasets import load_dataset __lowerCamelCase : str = load_dataset('nielsr/rvlcdip-demo' ) __lowerCamelCase : List[Any] = dataset['train'][0]['image'].convert('RGB' ) __lowerCamelCase : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): __lowerCamelCase : str = model(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = outputs.logits __lowerCamelCase : List[Any] = torch.Size((1, 16) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = torch.tensor( [-0.4_1_5_8, -0.4_0_9_2, -0.4_3_4_7] , device=SCREAMING_SNAKE_CASE_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
185
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : str = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys A : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
259
"""simple docstring""" from collections.abc import Callable def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = a __lowerCAmelCase = b if function(_UpperCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(_UpperCamelCase ) == 0: return b elif ( function(_UpperCamelCase ) * function(_UpperCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("could not find root in given interval." ) else: __lowerCAmelCase = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_UpperCamelCase ) == 0: return mid elif function(_UpperCamelCase ) * function(_UpperCamelCase ) < 0: __lowerCAmelCase = mid else: __lowerCAmelCase = mid __lowerCAmelCase = start + (end - start) / 2.0 return mid def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_0_0_0)) import doctest doctest.testmod()
259
1
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : List[str] = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Any = """codegen""" lowerCAmelCase__ : Union[str, Any] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__(self : Any , UpperCamelCase : List[Any]=50400 , UpperCamelCase : Optional[Any]=2048 , UpperCamelCase : List[Any]=2048 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : Union[str, Any]=28 , UpperCamelCase : Optional[Any]=16 , UpperCamelCase : Dict=64 , UpperCamelCase : Tuple=None , UpperCamelCase : Optional[int]="gelu_new" , UpperCamelCase : str=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : int=1E-5 , UpperCamelCase : str=0.02 , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Optional[Any]=50256 , UpperCamelCase : Dict=50256 , UpperCamelCase : int=False , **UpperCamelCase : Optional[int] , ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = n_ctx lowercase__ = n_positions lowercase__ = n_embd lowercase__ = n_layer lowercase__ = n_head lowercase__ = n_inner lowercase__ = rotary_dim lowercase__ = activation_function lowercase__ = resid_pdrop lowercase__ = embd_pdrop lowercase__ = attn_pdrop lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache lowercase__ = bos_token_id lowercase__ = eos_token_id super().__init__( bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , tie_word_embeddings=UpperCamelCase , **UpperCamelCase ) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Union[str, Any] , UpperCamelCase : PretrainedConfig , UpperCamelCase : str = "default" , UpperCamelCase : List[PatchingSpec] = None , UpperCamelCase : bool = False , ): '''simple docstring''' super().__init__(UpperCamelCase , task=UpperCamelCase , patching_specs=UpperCamelCase , use_past=UpperCamelCase ) if not getattr(self._config , '''pad_token_id''' , UpperCamelCase ): # TODO: how to do that better? lowercase__ = 0 @property def UpperCamelCase__ (self : List[str] ): '''simple docstring''' lowercase__ = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(UpperCamelCase , direction='''inputs''' ) lowercase__ = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__ = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def UpperCamelCase__ (self : Any ): '''simple docstring''' return self._config.n_layer @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return self._config.n_head def UpperCamelCase__ (self : List[Any] , UpperCamelCase : PreTrainedTokenizer , UpperCamelCase : int = -1 , UpperCamelCase : int = -1 , UpperCamelCase : bool = False , UpperCamelCase : Optional[TensorType] = None , ): '''simple docstring''' lowercase__ = super(UpperCamelCase , self ).generate_dummy_inputs( UpperCamelCase , batch_size=UpperCamelCase , seq_length=UpperCamelCase , is_pair=UpperCamelCase , framework=UpperCamelCase ) # We need to order the input in the way they appears in the forward() lowercase__ = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__ ,lowercase__ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__ = seqlen + 2 lowercase__ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase__ = [ (torch.zeros(UpperCamelCase ), torch.zeros(UpperCamelCase )) for _ in range(self.num_layers ) ] lowercase__ = common_inputs['''attention_mask'''] if self.use_past: lowercase__ = ordered_inputs['''attention_mask'''].dtype lowercase__ = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(UpperCamelCase , UpperCamelCase , dtype=UpperCamelCase )] , dim=1 ) return ordered_inputs @property def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' return 13
2
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowerCAmelCase__ ( unittest.TestCase ): def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = [10, 20, 30, 40, 50, 60] lowercase_ : Optional[Any] = [2, 4, 6, 8, 10, 12] lowercase_ : Union[str, Any] = 1_00 self.assertEqual(kp.calc_profit(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , 2_10 ) def _snake_case ( self ): """simple docstring""" self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , '''max_weight must greater than zero.''' ) def _snake_case ( self ): """simple docstring""" self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , '''Weight can not be negative.''' ) def _snake_case ( self ): """simple docstring""" self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , '''Profit can not be negative.''' ) def _snake_case ( self ): """simple docstring""" self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , '''max_weight must greater than zero.''' ) def _snake_case ( self ): """simple docstring""" self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
93
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _SCREAMING_SNAKE_CASE = """platform""" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ): if attention_mask is None: snake_case_ : Dict = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: snake_case_ : List[str] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: snake_case_ : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ : str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case_ : Optional[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class SCREAMING_SNAKE_CASE_ : def __init__( self : List[str] , _A : Optional[Any] , _A : Optional[Any]=13 , _A : Optional[int]=7 , _A : Optional[int]=True , _A : Optional[int]=False , _A : Any=99 , _A : Dict=16 , _A : Union[str, Any]=2 , _A : List[Any]=4 , _A : Optional[Any]=4 , _A : Dict="gelu" , _A : Tuple=0.1 , _A : int=0.1 , _A : Optional[Any]=32 , _A : str=2 , _A : str=1 , _A : List[str]=0 , _A : Tuple=0.0_2 , ) -> List[str]: """simple docstring""" snake_case_ : Dict = parent snake_case_ : List[Any] = batch_size snake_case_ : Optional[Any] = seq_length snake_case_ : Optional[Any] = is_training snake_case_ : Any = use_labels snake_case_ : Union[str, Any] = vocab_size snake_case_ : Any = hidden_size snake_case_ : List[Any] = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : Tuple = intermediate_size snake_case_ : Optional[int] = hidden_act snake_case_ : str = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Optional[Any] = max_position_embeddings snake_case_ : List[Any] = eos_token_id snake_case_ : Any = pad_token_id snake_case_ : Union[str, Any] = bos_token_id snake_case_ : List[str] = initializer_range def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: """simple docstring""" snake_case_ : List[str] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) snake_case_ : List[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) snake_case_ : Any = shift_tokens_right(_A , 1 , 2 ) snake_case_ : int = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_A , ) snake_case_ : List[str] = prepare_blenderbot_inputs_dict(_A , _A , _A ) return config, inputs_dict def UpperCAmelCase_ ( self : Any ) -> int: """simple docstring""" snake_case_ ,snake_case_ : Dict = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase_ ( self : int , _A : Optional[Any] , _A : List[Any] , _A : Optional[Any] ) -> Optional[int]: """simple docstring""" snake_case_ : Optional[Any] = 20 snake_case_ : List[str] = model_class_name(_A ) snake_case_ : List[Any] = model.encode(inputs_dict['input_ids'] ) snake_case_ ,snake_case_ : Any = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) snake_case_ : List[Any] = model.init_cache(decoder_input_ids.shape[0] , _A , _A ) snake_case_ : List[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) snake_case_ : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) snake_case_ : Any = model.decode( decoder_input_ids[:, :-1] , _A , decoder_attention_mask=_A , past_key_values=_A , decoder_position_ids=_A , ) snake_case_ : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) snake_case_ : List[Any] = model.decode( decoder_input_ids[:, -1:] , _A , decoder_attention_mask=_A , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_A , ) snake_case_ : Optional[Any] = model.decode(_A , _A ) snake_case_ : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def UpperCAmelCase_ ( self : Any , _A : Any , _A : Tuple , _A : Any ) -> Tuple: """simple docstring""" snake_case_ : Dict = 20 snake_case_ : Dict = model_class_name(_A ) snake_case_ : Union[str, Any] = model.encode(inputs_dict['input_ids'] ) snake_case_ ,snake_case_ : List[str] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) snake_case_ : Dict = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) snake_case_ : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , _A , _A ) snake_case_ : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) snake_case_ : Tuple = model.decode( decoder_input_ids[:, :-1] , _A , decoder_attention_mask=_A , past_key_values=_A , decoder_position_ids=_A , ) snake_case_ : Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) snake_case_ : Optional[int] = model.decode( decoder_input_ids[:, -1:] , _A , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_A , decoder_position_ids=_A , ) snake_case_ : Dict = model.decode(_A , _A , decoder_attention_mask=_A ) snake_case_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): __magic_name__: List[str] = 99 def UpperCAmelCase_ ( self : int ) -> Optional[int]: """simple docstring""" snake_case_ : List[str] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) snake_case_ : Tuple = input_ids.shape[0] snake_case_ : Any = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def UpperCAmelCase_ ( self : Tuple ) -> List[str]: """simple docstring""" snake_case_ ,snake_case_ ,snake_case_ : List[Any] = self._get_config_and_data() snake_case_ : str = FlaxBlenderbotForConditionalGeneration(_A ) snake_case_ : int = lm_model(input_ids=_A ) snake_case_ : Tuple = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _A ) def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: """simple docstring""" snake_case_ : Optional[Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) snake_case_ : Optional[Any] = FlaxBlenderbotForConditionalGeneration(_A ) snake_case_ : Any = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) snake_case_ : Optional[int] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) snake_case_ : Optional[int] = lm_model(input_ids=_A , decoder_input_ids=_A ) snake_case_ : Optional[Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _A ) def UpperCAmelCase_ ( self : List[str] ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) snake_case_ : Dict = shift_tokens_right(_A , 1 , 2 ) snake_case_ : Tuple = np.equal(_A , 1 ).astype(np.floataa ).sum() snake_case_ : List[str] = np.equal(_A , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_A , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase , snake_case_ ): __magic_name__: List[str] = True __magic_name__: int = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) __magic_name__: Optional[int] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def UpperCAmelCase_ ( self : Any ) -> int: """simple docstring""" snake_case_ : Optional[Any] = FlaxBlenderbotModelTester(self ) def UpperCAmelCase_ ( self : List[str] ) -> Tuple: """simple docstring""" snake_case_ ,snake_case_ : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_A , _A , _A ) def UpperCAmelCase_ ( self : Tuple ) -> List[str]: """simple docstring""" snake_case_ ,snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_A , _A , _A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> str: """simple docstring""" snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case_ : Dict = self._prepare_for_class(_A , _A ) snake_case_ : Dict = model_class(_A ) @jax.jit def encode_jitted(_A : List[Any] , _A : Union[str, Any]=None , **_A : str ): return model.encode(input_ids=_A , attention_mask=_A ) with self.subTest('JIT Enabled' ): snake_case_ : Dict = encode_jitted(**_A ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): snake_case_ : int = encode_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" snake_case_ ,snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case_ : Tuple = model_class(_A ) snake_case_ : int = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) snake_case_ : Any = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_A : Optional[int] , _A : Tuple , _A : int ): return model.decode( decoder_input_ids=_A , decoder_attention_mask=_A , encoder_outputs=_A , ) with self.subTest('JIT Enabled' ): snake_case_ : Union[str, Any] = decode_jitted(**_A ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): snake_case_ : Dict = decode_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: """simple docstring""" for model_class_name in self.all_model_classes: snake_case_ : List[Any] = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids snake_case_ : int = np.ones((1, 1) ) * model.config.eos_token_id snake_case_ : Any = model(_A ) self.assertIsNotNone(_A ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def UpperCAmelCase_ ( self : List[str] ) -> int: """simple docstring""" snake_case_ : Optional[int] = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} snake_case_ : int = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} snake_case_ : Any = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=_A ) snake_case_ : Optional[Any] = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) snake_case_ : Optional[int] = ['Sam'] snake_case_ : Optional[Any] = tokenizer(_A , return_tensors='jax' ) snake_case_ : int = model.generate(**_A , **_A ) snake_case_ : Tuple = 'Sam is a great name. It means "sun" in Gaelic.' snake_case_ : Union[str, Any] = tokenizer.batch_decode(_A , **_A ) assert generated_txt[0].strip() == tgt_text
88
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
88
1
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ ( a__ ): """simple docstring""" __UpperCamelCase = "new-model" if is_tf_available(): class __magic_name__ ( a__ ): """simple docstring""" __UpperCamelCase = NewModelConfig @require_tf class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : Any = 'bert-base-cased' A_ : Tuple = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A_ : Dict = TFAutoModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : List[str] = 'bert-base-cased' A_ : Dict = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A_ : Any = TFAutoModelForPreTraining.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : int = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A_ : Tuple = TFAutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) A_ : Tuple = TFAutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE_ , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[int] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A_ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A_ : str = TFAutoModelForMaskedLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) A_ : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(SCREAMING_SNAKE_CASE_ , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A_ : Any = TFAutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) A_ : Any = TFAutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE_ , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: A_ : Optional[int] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A_ : int = TFAutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: A_ : Union[str, Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A_ : Optional[Any] = TFAutoModelForQuestionAnswering.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow @require_tensorflow_probability def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: A_ : Any = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A_ : str = TFAutoModelForTableQuestionAnswering.from_pretrained(SCREAMING_SNAKE_CASE_ ) A_ : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained( SCREAMING_SNAKE_CASE_ , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Any = TFAutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE_ ) , 14_410 ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : int = TFAutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE_ ) , 14_410 ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Tuple = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A_ : str = copy.deepcopy(model.config ) A_ : Union[str, Any] = ['FunnelBaseModel'] A_ : Union[str, Any] = TFAutoModel.from_config(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(SCREAMING_SNAKE_CASE_ ) A_ : List[Any] = TFAutoModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' try: AutoConfig.register("new-model" , SCREAMING_SNAKE_CASE_ ) A_ : Dict = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE_ ): auto_class.register(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) auto_class.register(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE_ ): auto_class.register(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Now that the config is registered, it can be used as any other config with the auto-API A_ : Optional[Any] = BertModelTester(self ).get_config() A_ : Union[str, Any] = NewModelConfig(**tiny_config.to_dict() ) A_ : List[Any] = auto_class.from_config(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(SCREAMING_SNAKE_CASE_ ) A_ : Optional[Any] = auto_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' with self.assertRaisesRegex( SCREAMING_SNAKE_CASE_ , "bert-base is not a local folder and is not a valid model identifier" ): A_ : List[Any] = TFAutoModel.from_pretrained("bert-base" ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' with self.assertRaisesRegex( SCREAMING_SNAKE_CASE_ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): A_ : List[Any] = TFAutoModel.from_pretrained(SCREAMING_SNAKE_CASE_ , revision="aaaaaa" ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' with self.assertRaisesRegex( SCREAMING_SNAKE_CASE_ , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ): A_ : int = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , "Use `from_pt=True` to load this model" ): A_ : Optional[int] = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Union[str, Any] = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: A_ : str = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint A_ : Tuple = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) with RequestCounter() as counter: A_ : Optional[int] = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
300
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __UpperCAmelCase = None __UpperCAmelCase = '''<''' if sys.byteorder == '''little''' else '''>''' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __UpperCAmelCase = [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class lowerCAmelCase_ : UpperCAmelCase__ : bool = True UpperCAmelCase__ : Optional[str] = None # Automatically constructed UpperCAmelCase__ : ClassVar[str] = "PIL.Image.Image" UpperCAmelCase__ : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) UpperCAmelCase__ : str = field(default="Image" , init=a__ , repr=a__ ) def __call__( self ) -> Any: return self.pa_type def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[int] = np.array(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): return {"path": value, "bytes": None} elif isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): return {"path": None, "bytes": value} elif isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_, PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(SCREAMING_SNAKE_CASE_ ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> "PIL.Image.Image": if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: UpperCamelCase : Any = {} UpperCamelCase , UpperCamelCase : Union[str, Any] = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(F"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : int = PIL.Image.open(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : int = path.split('::' )[-1] try: UpperCamelCase : Optional[Any] = string_to_dict(SCREAMING_SNAKE_CASE_, config.HUB_DATASETS_URL )['repo_id'] UpperCamelCase : str = token_per_repo_id.get(SCREAMING_SNAKE_CASE_ ) except ValueError: UpperCamelCase : Tuple = None with xopen(SCREAMING_SNAKE_CASE_, 'rb', use_auth_token=SCREAMING_SNAKE_CASE_ ) as f: UpperCamelCase : Optional[int] = BytesIO(f.read() ) UpperCamelCase : int = PIL.Image.open(bytes_ ) else: UpperCamelCase : Optional[int] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def snake_case_ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> pa.StructArray: if pa.types.is_string(storage.type ): UpperCamelCase : List[str] = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ), type=pa.binary() ) UpperCamelCase : Dict = pa.StructArray.from_arrays([bytes_array, storage], ['bytes', 'path'], mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase : Optional[int] = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ), type=pa.string() ) UpperCamelCase : Union[str, Any] = pa.StructArray.from_arrays([storage, path_array], ['bytes', 'path'], mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: UpperCamelCase : List[str] = storage.field('bytes' ) else: UpperCamelCase : List[str] = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ), type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: UpperCamelCase : List[str] = storage.field('path' ) else: UpperCamelCase : Optional[Any] = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ), type=pa.string() ) UpperCamelCase : Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array], ['bytes', 'path'], mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCamelCase : Optional[Any] = pa.array( [encode_np_array(np.array(SCREAMING_SNAKE_CASE_ ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()], type=pa.binary(), ) UpperCamelCase : List[str] = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ), type=pa.string() ) UpperCamelCase : int = pa.StructArray.from_arrays( [bytes_array, path_array], ['bytes', 'path'], mask=bytes_array.is_null() ) return array_cast(SCREAMING_SNAKE_CASE_, self.pa_type ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(SCREAMING_SNAKE_CASE_ ): with xopen(SCREAMING_SNAKE_CASE_, 'rb' ) as f: UpperCamelCase : Optional[int] = f.read() return bytes_ UpperCamelCase : Union[str, Any] = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) UpperCamelCase : Any = pa.array( [os.path.basename(SCREAMING_SNAKE_CASE_ ) if path is not None else None for path in storage.field('path' ).to_pylist()], type=pa.string(), ) UpperCamelCase : int = pa.StructArray.from_arrays([bytes_array, path_array], ['bytes', 'path'], mask=bytes_array.is_null() ) return array_cast(SCREAMING_SNAKE_CASE_, self.pa_type ) def UpperCamelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCamelCase : Dict = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def UpperCamelCase ( snake_case__ : "PIL.Image.Image" ) -> bytes: UpperCamelCase : Any = BytesIO() if image.format in list_image_compression_formats(): UpperCamelCase : Tuple = image.format else: UpperCamelCase : List[str] = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(snake_case__ , format=snake_case__ ) return buffer.getvalue() def UpperCamelCase ( snake_case__ : "PIL.Image.Image" ) -> dict: if hasattr(snake_case__ , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(snake_case__ )} def UpperCamelCase ( snake_case__ : np.ndarray ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) UpperCamelCase : Union[str, Any] = array.dtype UpperCamelCase : List[Any] = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER UpperCamelCase : Optional[Any] = dtype.kind UpperCamelCase : Any = dtype.itemsize UpperCamelCase : int = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCamelCase : Optional[Any] = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( F"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCamelCase : List[Any] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCamelCase : Dict = dtype_byteorder + dtype_kind + str(snake_case__ ) UpperCamelCase : str = np.dtype(snake_case__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) UpperCamelCase : Union[str, Any] = PIL.Image.fromarray(array.astype(snake_case__ ) ) return {"path": None, "bytes": image_to_bytes(snake_case__ )} def UpperCamelCase ( snake_case__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: UpperCamelCase , UpperCamelCase : Union[str, Any] = first_non_null_value(snake_case__ ) if isinstance(snake_case__ , snake_case__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(snake_case__ , np.ndarray ): UpperCamelCase : List[Any] = no_op_if_value_is_null(snake_case__ ) return [obj_to_image_dict_func(snake_case__ ) for obj in objs] elif isinstance(snake_case__ , PIL.Image.Image ): UpperCamelCase : Optional[int] = no_op_if_value_is_null(snake_case__ ) return [obj_to_image_dict_func(snake_case__ ) for obj in objs] else: return objs else: return objs
119
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Dict = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class __UpperCAmelCase ( snake_case__ ): '''simple docstring''' __lowerCAmelCase = """mobilenet_v1""" def __init__(self : List[Any] , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Optional[int]=224 , _lowerCAmelCase : Union[str, Any]=1.0 , _lowerCAmelCase : int=8 , _lowerCAmelCase : Dict="relu6" , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[int]=0.999 , _lowerCAmelCase : Union[str, Any]=0.02 , _lowerCAmelCase : Union[str, Any]=0.001 , **_lowerCAmelCase : str , ): super().__init__(**_A ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) A = num_channels A = image_size A = depth_multiplier A = min_depth A = hidden_act A = tf_padding A = classifier_dropout_prob A = initializer_range A = layer_norm_eps class __UpperCAmelCase ( snake_case__ ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def A (self : int ): return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def A (self : Optional[int] ): if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def A (self : Union[str, Any] ): return 1e-4
364
'''simple docstring''' def __a ( UpperCAmelCase ) ->bool: """simple docstring""" return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = credit_card_number A = 0 A = len(UpperCAmelCase ) - 2 for i in range(UpperCAmelCase , -1 , -2 ): # double the value of every second digit A = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 A = cc_number[:i] + str(UpperCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(UpperCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = f"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(f"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(UpperCAmelCase ) <= 16: print(f"""{error_message} of its length.""" ) return False if not validate_initial_digits(UpperCAmelCase ): print(f"""{error_message} of its first two digits.""" ) return False if not luhn_validation(UpperCAmelCase ): print(f"""{error_message} it fails the Luhn check.""" ) return False print(f"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
337
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") UpperCamelCase__ = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") UpperCamelCase__ = """pt""" if is_torch_available() else """tf""" @require_sentencepiece @require_tokenizers class a__ ( snake_case__ , unittest.TestCase ): _a : int = CamembertTokenizer _a : Dict = CamembertTokenizerFast _a : Tuple = True _a : List[Any] = True def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = CamembertTokenizer(_A ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = "<pad>" __lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>NOTUSED" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(_A ) , 1_0_0_4 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_5 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = CamembertTokenizer(_A ) tokenizer.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) __lowerCAmelCase = "I was born in 92000, and this is falsé." __lowerCAmelCase = tokenizer.encode(_A ) __lowerCAmelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) __lowerCAmelCase = tokenizer.encode(_A , add_special_tokens=_A ) __lowerCAmelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(_A ) __lowerCAmelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if not self.test_rust_tokenizer: return __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = "I was born in 92000, and this is falsé." __lowerCAmelCase = tokenizer.tokenize(_A ) __lowerCAmelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __lowerCAmelCase = tokenizer.encode(_A , add_special_tokens=_A ) __lowerCAmelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(_A ) __lowerCAmelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = {"input_ids": [[5, 5_4, 7_1_9_6, 2_9_7, 3_0, 2_3, 7_7_6, 1_8, 1_1, 3_2_1_5, 3_7_0_5, 8_2_5_2, 2_2, 3_1_6_4, 1_1_8_1, 2_1_1_6, 2_9, 1_6, 8_1_3, 2_5, 7_9_1, 3_3_1_4, 2_0, 3_4_4_6, 3_8, 2_7_5_7_5, 1_2_0, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_6_8, 1_7, 1_1, 9_0_8_8, 2_0, 1_5_1_7, 8, 2_2_8_0_4, 1_8_8_1_8, 1_0, 3_8, 6_2_9, 6_0_7, 6_0_7, 1_4_2, 1_9, 7_1_9_6, 8_6_7, 5_6, 1_0_3_2_6, 2_4, 2_2_6_7, 2_0, 4_1_6, 5_0_7_2, 1_5_6_1_2, 2_3_3, 7_3_4, 7, 2_3_9_9, 2_7, 1_6, 3_0_1_5, 1_6_4_9, 7, 2_4, 2_0, 4_3_3_8, 2_3_9_9, 2_7, 1_3, 3_4_0_0, 1_4, 1_3, 6_1_8_9, 8, 9_3_0, 9, 6]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. __lowerCAmelCase = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=_A , model_name="camembert-base" , revision="3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf" , sequences=_A , )
92
1
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a__ ) class __UpperCamelCase ( a__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCamelCase : str =field(default="""summarization""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowerCamelCase : ClassVar[Features] =Features({"""text""": Value("""string""" )} ) lowerCamelCase : ClassVar[Features] =Features({"""summary""": Value("""string""" )} ) lowerCamelCase : str ="text" lowerCamelCase : str ="summary" @property def __a ( self ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
79
"""simple docstring""" # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
79
1
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=224 , SCREAMING_SNAKE_CASE_=1000 , SCREAMING_SNAKE_CASE_=[3, 3, 6, 4] , SCREAMING_SNAKE_CASE_=[48, 56, 112, 220] , ) -> List[Any]: UpperCamelCase :List[Any] = parent UpperCamelCase :Optional[int] = batch_size UpperCamelCase :str = num_channels UpperCamelCase :Tuple = is_training UpperCamelCase :Optional[int] = use_labels UpperCamelCase :str = hidden_dropout_prob UpperCamelCase :Optional[int] = attention_probs_dropout_prob UpperCamelCase :Dict = num_labels UpperCamelCase :List[str] = image_size UpperCamelCase :Union[str, Any] = layer_depths UpperCamelCase :Union[str, Any] = embed_dims def UpperCAmelCase ( self ) -> str: UpperCamelCase :int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase :Any = None if self.use_labels: UpperCamelCase :Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase :int = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ) -> Optional[Any]: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=SCREAMING_SNAKE_CASE_ , layer_scale_init_value=1e-5 , ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase :Any = SwiftFormerModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase :Optional[int] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase :Optional[Any] = self.num_labels UpperCamelCase :List[Any] = SwiftFormerForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase :str = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) UpperCamelCase :Optional[int] = SwiftFormerForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase :Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase :List[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self ) -> Union[str, Any]: ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) :List[Any] = self.prepare_config_and_inputs() UpperCamelCase :str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( lowercase, lowercase, unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any =(SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCamelCase_ : Tuple =( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ : Optional[Any] =False UpperCamelCase_ : List[str] =False UpperCamelCase_ : str =False UpperCamelCase_ : Optional[int] =False UpperCamelCase_ : List[Any] =False def UpperCAmelCase ( self ) -> Any: UpperCamelCase :Any = SwiftFormerModelTester(self ) UpperCamelCase :Any = ConfigTester( self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def UpperCAmelCase ( self ) -> Optional[int]: pass def UpperCAmelCase ( self ) -> Dict: UpperCamelCase , UpperCamelCase :int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase :Any = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def UpperCAmelCase ( self ) -> Any: UpperCamelCase , UpperCamelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase :Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase :Optional[int] = [*signature.parameters.keys()] UpperCamelCase :Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Any: UpperCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Any: UpperCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def UpperCAmelCase ( self ) -> Union[str, Any]: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase :str = SwiftFormerModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def UpperCAmelCase ( self ) -> str: pass def UpperCAmelCase ( self ) -> Any: def check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase :Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase :Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase :Optional[int] = outputs.hidden_states UpperCamelCase :List[Any] = 8 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(SCREAMING_SNAKE_CASE_ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) UpperCamelCase , UpperCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase :List[str] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase :Any = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Optional[Any]: def _config_zero_init(SCREAMING_SNAKE_CASE_ ): UpperCamelCase :Union[str, Any] = copy.deepcopy(SCREAMING_SNAKE_CASE_ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1e-10 ) if isinstance(getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): UpperCamelCase :Dict = _config_zero_init(getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return configs_no_init UpperCamelCase , UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :Optional[Any] = _config_zero_init(SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: UpperCamelCase :str = model_class(config=SCREAMING_SNAKE_CASE_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase ( self ) -> Any: pass def _A ( ): UpperCamelCase :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase ( self ) -> int: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase :Union[str, Any] = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = self.default_image_processor UpperCamelCase :Union[str, Any] = prepare_img() UpperCamelCase :Optional[Any] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase :List[str] = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase :Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = torch.tensor([[-2.1703e00, 2.1107e00, -2.0811e00]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
259
import math def _A ( SCREAMING_SNAKE_CASE__ : int = 100 ): UpperCamelCase :Dict = sum(i * i for i in range(1 , n + 1 ) ) UpperCamelCase :List[str] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
259
1
"""simple docstring""" from __future__ import annotations lowerCamelCase__ = [] def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> bool: """simple docstring""" for i in range(len(lowercase_ ) ): if board[row][i] == 1: return False for i in range(len(lowercase_ ) ): if board[i][column] == 1: return False for i, j in zip(range(lowercase_ ,-1 ,-1 ) ,range(lowercase_ ,-1 ,-1 ) ): if board[i][j] == 1: return False for i, j in zip(range(lowercase_ ,-1 ,-1 ) ,range(lowercase_ ,len(lowercase_ ) ) ): if board[i][j] == 1: return False return True def lowercase__ ( lowercase_ ,lowercase_ ) -> bool: """simple docstring""" if row >= len(lowercase_ ): solution.append(lowercase_ ) printboard(lowercase_ ) print() return True for i in range(len(lowercase_ ) ): if is_safe(lowercase_ ,lowercase_ ,lowercase_ ): _UpperCamelCase : Optional[int] = 1 solve(lowercase_ ,row + 1 ) _UpperCamelCase : Dict = 0 return False def lowercase__ ( lowercase_ ) -> None: """simple docstring""" for i in range(len(lowercase_ ) ): for j in range(len(lowercase_ ) ): if board[i][j] == 1: print("Q" ,end=" " ) else: print("." ,end=" " ) print() # n=int(input("The no. of queens")) lowerCamelCase__ = 8 lowerCamelCase__ = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
369
"""simple docstring""" import torch from transformers import AutoModel class __SCREAMING_SNAKE_CASE ( torch.nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Tuple="sayef/fsner-bert-base-uncased" ) -> Dict: super(__a , self ).__init__() _UpperCamelCase : Optional[Any] = AutoModel.from_pretrained(__a , return_dict=__a ) _UpperCamelCase : str = torch.nn.CosineSimilarity(3 , 1e-0_8 ) _UpperCamelCase : List[str] = torch.nn.Softmax(dim=1 ) def __SCREAMING_SNAKE_CASE ( self : int , **__a : Tuple ) -> Optional[Any]: return self.bert(**__a ).last_hidden_state def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Optional[Any] ) -> Optional[int]: return token_embeddings.sum(2 , keepdim=__a ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Any , __a : List[Any] , __a : Tuple=1 ) -> List[Any]: return self.softmax(T * self.cos(__a , __a ) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : List[str] , __a : Dict ) -> Union[str, Any]: _UpperCamelCase : str = W_supports["sizes"].tolist() _UpperCamelCase : Any = W_supports["start_token_id"].item() _UpperCamelCase : Optional[Any] = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _UpperCamelCase : str = self.BERT(**__a ) _UpperCamelCase : int = self.BERT(**__a ) _UpperCamelCase : int = None _UpperCamelCase : Optional[int] = None _UpperCamelCase : List[Any] = W_supports["input_ids"] == start_token_id _UpperCamelCase : Optional[int] = W_supports["input_ids"] == end_token_id for i, size in enumerate(__a ): if i == 0: _UpperCamelCase : Dict = 0 else: _UpperCamelCase : Any = support_sizes[i - 1] _UpperCamelCase : Dict = S[s : s + size][start_token_masks[s : s + size]] _UpperCamelCase : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _UpperCamelCase : List[Any] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _UpperCamelCase : Any = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _UpperCamelCase : Any = torch.vstack((p_starts, p_start) ) _UpperCamelCase : Any = torch.vstack((p_ends, p_end) ) else: _UpperCamelCase : Optional[Any] = p_start _UpperCamelCase : str = p_end return p_starts, p_ends
310
0
from decimal import Decimal, getcontext from math import ceil, factorial def a__ ( A_ ): '''simple docstring''' if not isinstance(A_, A_ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) __magic_name__ = precision __magic_name__ = ceil(precision / 14 ) __magic_name__ = 426880 * Decimal(10005 ).sqrt() __magic_name__ = 1 __magic_name__ = 13591409 __magic_name__ = Decimal(A_ ) for k in range(1, A_ ): __magic_name__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(A_ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __lowerCAmelCase : str = 50 print(F'''The first {n} digits of pi is: {pi(n)}''')
88
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase : List[str] = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __lowerCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
88
1
from __future__ import annotations from scipy.special import comb # type: ignore class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowercase_ = len(UpperCAmelCase ) - 1 def A__ ( self , UpperCAmelCase ) -> list[float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase_ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , UpperCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(UpperCAmelCase ) , 5 ) == 1 return output_values def A__ ( self , UpperCAmelCase ) -> tuple[float, float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase_ = self.basis_function(UpperCAmelCase ) lowercase_ = 0.0 lowercase_ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def A__ ( self , UpperCAmelCase = 0.01 ) -> Dict: '''simple docstring''' from matplotlib import pyplot as plt # type: ignore lowercase_ = [] # x coordinates of points to plot lowercase_ = [] # y coordinates of points to plot lowercase_ = 0.0 while t <= 1: lowercase_ = self.bezier_curve_function(UpperCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowercase_ = [i[0] for i in self.list_of_points] lowercase_ = [i[1] for i in self.list_of_points] plt.plot( UpperCAmelCase , UpperCAmelCase , color="blue" , label="Curve of Degree " + str(self.degree ) , ) plt.scatter(UpperCAmelCase , UpperCAmelCase , color="red" , label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
357
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 1 lowercase_ = 3 lowercase_ = (32, 32) lowercase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase ) return image @property def A__ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def A__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def A__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(UpperCAmelCase ) @property def A__ ( self ) -> Dict: '''simple docstring''' def extract(*UpperCAmelCase , **UpperCAmelCase ): class __lowerCamelCase : """simple docstring""" def __init__( self ) -> List[Any]: '''simple docstring''' lowercase_ = torch.ones([0] ) def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' self.pixel_values.to(UpperCAmelCase ) return self return Out() return extract def A__ ( self ) -> str: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) lowercase_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ) lowercase_ = output.images lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] lowercase_ = image[0, -3:, -3:, -1] lowercase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) # put models in fp16 lowercase_ = unet.half() lowercase_ = vae.half() lowercase_ = bert.half() # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase_ = init_image.resize((760, 504) ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] lowercase_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowercase_ = init_image.resize((768, 512) ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
297
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case : Dict = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class _snake_case ( _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizer SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True def SCREAMING_SNAKE_CASE__ ( self ): super().setUp() # We have a SentencePiece fixture for testing a :Dict = XLMRobertaTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ): a :Union[str, Any] = '''<pad>''' a :Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_lowerCamelCase ) , 1002 ) def SCREAMING_SNAKE_CASE__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = XLMRobertaTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) a :str = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) a :Any = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) a :List[str] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) a :int = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def SCREAMING_SNAKE_CASE__ ( self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return a :Dict = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a :List[str] = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) a :Optional[Any] = self.tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) a :Any = tempfile.mkdtemp() a :int = tokenizer_r.save_pretrained(_lowerCamelCase ) a :List[Any] = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) a :Union[str, Any] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_lowerCamelCase , _lowerCamelCase ) # Checks everything loads correctly in the same way a :int = tokenizer_r.from_pretrained(_lowerCamelCase ) a :Union[str, Any] = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_lowerCamelCase ) # Save tokenizer rust, legacy_format=True a :Optional[int] = tempfile.mkdtemp() a :Any = tokenizer_r.save_pretrained(_lowerCamelCase , legacy_format=_lowerCamelCase ) a :List[str] = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(_lowerCamelCase , _lowerCamelCase ) # Checks everything loads correctly in the same way a :str = tokenizer_r.from_pretrained(_lowerCamelCase ) a :Tuple = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) ) shutil.rmtree(_lowerCamelCase ) # Save tokenizer rust, legacy_format=False a :str = tempfile.mkdtemp() a :int = tokenizer_r.save_pretrained(_lowerCamelCase , legacy_format=_lowerCamelCase ) a :Any = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way a :Union[str, Any] = tokenizer_r.from_pretrained(_lowerCamelCase ) a :List[str] = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) ) shutil.rmtree(_lowerCamelCase ) @cached_property def SCREAMING_SNAKE_CASE__ ( self ): return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def SCREAMING_SNAKE_CASE__ ( self ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_lowerCamelCase , f.name ) a :Union[str, Any] = XLMRobertaTokenizer(f.name , keep_accents=_lowerCamelCase ) a :Optional[Any] = pickle.dumps(_lowerCamelCase ) pickle.loads(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): if not self.test_rust_tokenizer: return a :Union[str, Any] = self.get_tokenizer() a :Dict = self.get_rust_tokenizer() a :Any = '''I was born in 92000, and this is falsé.''' a :int = tokenizer.tokenize(_lowerCamelCase ) a :Dict = rust_tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) a :Dict = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) a :Union[str, Any] = rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) a :Union[str, Any] = self.get_rust_tokenizer() a :Tuple = tokenizer.encode(_lowerCamelCase ) a :Union[str, Any] = rust_tokenizer.encode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[int] = '''Hello World!''' a :Optional[Any] = [0, 3_5378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): a :int = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) a :List[Any] = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 17_9459, 12_4850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 1_0114, 711, 152, 20, 6, 5, 2_2376, 642, 1221, 1_5190, 3_4153, 450, 5608, 959, 1119, 5_7702, 136, 186, 47, 1098, 2_9367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 5_0901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): # fmt: off a :Optional[Any] = {'''input_ids''': [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
94
import math class __SCREAMING_SNAKE_CASE : def __init__( self , SCREAMING_SNAKE_CASE__=0 ): # a graph with Node 0,1,...,N-1 lowercase : List[Any] = n lowercase : List[Any] = [ [math.inf for j in range(0 , SCREAMING_SNAKE_CASE__ )] for i in range(0 , SCREAMING_SNAKE_CASE__ ) ] # adjacency matrix for weight lowercase : Union[str, Any] = [ [math.inf for j in range(0 , SCREAMING_SNAKE_CASE__ )] for i in range(0 , SCREAMING_SNAKE_CASE__ ) ] # dp[i][j] stores minimum distance from i to j def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : int = w def __lowerCamelCase ( self ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowercase : Any = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return self.dp[u][v] if __name__ == "__main__": __a = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
337
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : Dict = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 1_28, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 1_42, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } __UpperCamelCase : Optional[int] = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 1_28, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 1_42, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(__UpperCamelCase ) , __UpperCamelCase ) def __lowerCamelCase ( self ) -> Dict: '''simple docstring''' __UpperCamelCase : Tuple = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(__UpperCamelCase ) , x.transpose() ) ) __UpperCamelCase : Optional[Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(__UpperCamelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Optional[Any] = np.random.randn(3 , 4 ) __UpperCamelCase : Optional[Any] = torch.tensor(__UpperCamelCase ) self.assertTrue(np.allclose(transpose(__UpperCamelCase ) , transpose(__UpperCamelCase ).numpy() ) ) __UpperCamelCase : str = np.random.randn(3 , 4 , 5 ) __UpperCamelCase : str = torch.tensor(__UpperCamelCase ) self.assertTrue(np.allclose(transpose(__UpperCamelCase , axes=(1, 2, 0) ) , transpose(__UpperCamelCase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Optional[int] = np.random.randn(3 , 4 ) __UpperCamelCase : Optional[int] = tf.constant(__UpperCamelCase ) self.assertTrue(np.allclose(transpose(__UpperCamelCase ) , transpose(__UpperCamelCase ).numpy() ) ) __UpperCamelCase : List[Any] = np.random.randn(3 , 4 , 5 ) __UpperCamelCase : List[Any] = tf.constant(__UpperCamelCase ) self.assertTrue(np.allclose(transpose(__UpperCamelCase , axes=(1, 2, 0) ) , transpose(__UpperCamelCase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : Any = np.random.randn(3 , 4 ) __UpperCamelCase : Optional[int] = jnp.array(__UpperCamelCase ) self.assertTrue(np.allclose(transpose(__UpperCamelCase ) , np.asarray(transpose(__UpperCamelCase ) ) ) ) __UpperCamelCase : Tuple = np.random.randn(3 , 4 , 5 ) __UpperCamelCase : Any = jnp.array(__UpperCamelCase ) self.assertTrue(np.allclose(transpose(__UpperCamelCase , axes=(1, 2, 0) ) , np.asarray(transpose(__UpperCamelCase , axes=(1, 2, 0) ) ) ) ) def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : List[str] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(__UpperCamelCase , (4, 3) ) , np.reshape(__UpperCamelCase , (4, 3) ) ) ) __UpperCamelCase : Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(__UpperCamelCase , (12, 5) ) , np.reshape(__UpperCamelCase , (12, 5) ) ) ) @require_torch def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : Optional[Any] = np.random.randn(3 , 4 ) __UpperCamelCase : Optional[Any] = torch.tensor(__UpperCamelCase ) self.assertTrue(np.allclose(reshape(__UpperCamelCase , (4, 3) ) , reshape(__UpperCamelCase , (4, 3) ).numpy() ) ) __UpperCamelCase : str = np.random.randn(3 , 4 , 5 ) __UpperCamelCase : str = torch.tensor(__UpperCamelCase ) self.assertTrue(np.allclose(reshape(__UpperCamelCase , (12, 5) ) , reshape(__UpperCamelCase , (12, 5) ).numpy() ) ) @require_tf def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Optional[Any] = np.random.randn(3 , 4 ) __UpperCamelCase : Tuple = tf.constant(__UpperCamelCase ) self.assertTrue(np.allclose(reshape(__UpperCamelCase , (4, 3) ) , reshape(__UpperCamelCase , (4, 3) ).numpy() ) ) __UpperCamelCase : int = np.random.randn(3 , 4 , 5 ) __UpperCamelCase : Dict = tf.constant(__UpperCamelCase ) self.assertTrue(np.allclose(reshape(__UpperCamelCase , (12, 5) ) , reshape(__UpperCamelCase , (12, 5) ).numpy() ) ) @require_flax def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' __UpperCamelCase : str = np.random.randn(3 , 4 ) __UpperCamelCase : Optional[int] = jnp.array(__UpperCamelCase ) self.assertTrue(np.allclose(reshape(__UpperCamelCase , (4, 3) ) , np.asarray(reshape(__UpperCamelCase , (4, 3) ) ) ) ) __UpperCamelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) __UpperCamelCase : Dict = jnp.array(__UpperCamelCase ) self.assertTrue(np.allclose(reshape(__UpperCamelCase , (12, 5) ) , np.asarray(reshape(__UpperCamelCase , (12, 5) ) ) ) ) def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' __UpperCamelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(__UpperCamelCase ) , np.squeeze(__UpperCamelCase ) ) ) __UpperCamelCase : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(__UpperCamelCase , axis=2 ) , np.squeeze(__UpperCamelCase , axis=2 ) ) ) @require_torch def __lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : List[str] = np.random.randn(1 , 3 , 4 ) __UpperCamelCase : Tuple = torch.tensor(__UpperCamelCase ) self.assertTrue(np.allclose(squeeze(__UpperCamelCase ) , squeeze(__UpperCamelCase ).numpy() ) ) __UpperCamelCase : str = np.random.randn(1 , 4 , 1 , 5 ) __UpperCamelCase : Tuple = torch.tensor(__UpperCamelCase ) self.assertTrue(np.allclose(squeeze(__UpperCamelCase , axis=2 ) , squeeze(__UpperCamelCase , axis=2 ).numpy() ) ) @require_tf def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : Tuple = np.random.randn(1 , 3 , 4 ) __UpperCamelCase : Tuple = tf.constant(__UpperCamelCase ) self.assertTrue(np.allclose(squeeze(__UpperCamelCase ) , squeeze(__UpperCamelCase ).numpy() ) ) __UpperCamelCase : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) __UpperCamelCase : List[str] = tf.constant(__UpperCamelCase ) self.assertTrue(np.allclose(squeeze(__UpperCamelCase , axis=2 ) , squeeze(__UpperCamelCase , axis=2 ).numpy() ) ) @require_flax def __lowerCamelCase ( self ) -> str: '''simple docstring''' __UpperCamelCase : str = np.random.randn(1 , 3 , 4 ) __UpperCamelCase : Optional[int] = jnp.array(__UpperCamelCase ) self.assertTrue(np.allclose(squeeze(__UpperCamelCase ) , np.asarray(squeeze(__UpperCamelCase ) ) ) ) __UpperCamelCase : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) __UpperCamelCase : str = jnp.array(__UpperCamelCase ) self.assertTrue(np.allclose(squeeze(__UpperCamelCase , axis=2 ) , np.asarray(squeeze(__UpperCamelCase , axis=2 ) ) ) ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Tuple = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(__UpperCamelCase , axis=1 ) , np.expand_dims(__UpperCamelCase , axis=1 ) ) ) @require_torch def __lowerCamelCase ( self ) -> Any: '''simple docstring''' __UpperCamelCase : Union[str, Any] = np.random.randn(3 , 4 ) __UpperCamelCase : Optional[int] = torch.tensor(__UpperCamelCase ) self.assertTrue(np.allclose(expand_dims(__UpperCamelCase , axis=1 ) , expand_dims(__UpperCamelCase , axis=1 ).numpy() ) ) @require_tf def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : Optional[Any] = np.random.randn(3 , 4 ) __UpperCamelCase : Optional[Any] = tf.constant(__UpperCamelCase ) self.assertTrue(np.allclose(expand_dims(__UpperCamelCase , axis=1 ) , expand_dims(__UpperCamelCase , axis=1 ).numpy() ) ) @require_flax def __lowerCamelCase ( self ) -> str: '''simple docstring''' __UpperCamelCase : str = np.random.randn(3 , 4 ) __UpperCamelCase : str = jnp.array(__UpperCamelCase ) self.assertTrue(np.allclose(expand_dims(__UpperCamelCase , axis=1 ) , np.asarray(expand_dims(__UpperCamelCase , axis=1 ) ) ) )
171
from __future__ import annotations from fractions import Fraction def UpperCAmelCase_ (_lowerCAmelCase : int , _lowerCAmelCase : int ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def UpperCAmelCase_ (_lowerCAmelCase : int ): __UpperCamelCase : Optional[Any] = [] __UpperCamelCase : Optional[Any] = 11 __UpperCamelCase : List[str] = int("1" + "0" * digit_len ) for num in range(_lowerCAmelCase , _lowerCAmelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_lowerCAmelCase , _lowerCAmelCase ): solutions.append(F'''{num}/{den}''' ) den += 1 num += 1 __UpperCamelCase : Tuple = 10 return solutions def UpperCAmelCase_ (_lowerCAmelCase : int = 2 ): __UpperCamelCase : Optional[Any] = 1.0 for fraction in fraction_list(_lowerCAmelCase ): __UpperCamelCase : Union[str, Any] = Fraction(_lowerCAmelCase ) result *= frac.denominator / frac.numerator return int(_lowerCAmelCase ) if __name__ == "__main__": print(solution())
171
1