Datasets:
Upload 2 files
Browse files- README.md +2 -2
- dataset_infos.json +86 -0
README.md
CHANGED
@@ -9,7 +9,7 @@ license:
|
|
9 |
- cc-by-sa-4.0
|
10 |
multilinguality:
|
11 |
- monolingual
|
12 |
-
pretty_name:
|
13 |
size_categories:
|
14 |
- 100K<n<1M
|
15 |
source_datasets:
|
@@ -92,7 +92,7 @@ dataset_info:
|
|
92 |
|
93 |
### Dataset Summary
|
94 |
|
95 |
-
The Korean Multi-label Hate Speech Dataset, **K-MHaS**, consists of 109,692 utterances from Korean online news comments, labelled with 8 fine-grained hate speech classes (labels: `Politics`, `Origin`, `Physical`, `Age`, `Gender`, `Religion`, `Race`, `Profanity`) or `Not Hate Speech` class. Each utterance provides from a single to four labels that can handles Korean language patterns effectively. For more details, please refer to our paper about [K-MHaS](https://aclanthology.org/2022.coling-1.311), published at COLING 2022.
|
96 |
|
97 |
### Supported Tasks and Leaderboards
|
98 |
Hate Speech Detection
|
|
|
9 |
- cc-by-sa-4.0
|
10 |
multilinguality:
|
11 |
- monolingual
|
12 |
+
pretty_name: K-MHaS_Korean Multi-label Hate Speech Dataset
|
13 |
size_categories:
|
14 |
- 100K<n<1M
|
15 |
source_datasets:
|
|
|
92 |
|
93 |
### Dataset Summary
|
94 |
|
95 |
+
The Korean Multi-label Hate Speech Dataset, **K-MHaS**, consists of 109,692 utterances from Korean online news comments, labelled with 8 fine-grained hate speech classes (labels: `Politics`, `Origin`, `Physical`, `Age`, `Gender`, `Religion`, `Race`, `Profanity`) or `Not Hate Speech` class. Each utterance provides from a single to four labels that can handles Korean language patterns effectively. For more details, please refer to our paper about [**K-MHaS**](https://aclanthology.org/2022.coling-1.311), published at COLING 2022.
|
96 |
|
97 |
### Supported Tasks and Leaderboards
|
98 |
Hate Speech Detection
|
dataset_infos.json
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"default": {
|
3 |
+
"description": "Korean Multi-label Hate Speech Dataset - K-MHaS \n a new multi-label dataset for hate speech detection that consists of 109k utterances from Korean online news comments,\n labelled with 8 fine-grained hate speech classes or not hate speech class. \n",
|
4 |
+
"citation": "@inproceedings{lee-etal-2022-k,\n title = \"K-{MH}a{S}: A Multi-label Hate Speech Detection Dataset in {K}orean Online News Comment\",\n author = \"Lee, Jean and\n Lim, Taejun and\n Lee, Heejun and\n Jo, Bogeun and\n Kim, Yangsok and\n Yoon, Heegeun and\n Han, Soyeon Caren\",\n booktitle = \"Proceedings of the 29th International Conference on Computational Linguistics\",\n month = oct,\n year = \"2022\",\n address = \"Gyeongju, Republic of Korea\",\n publisher = \"International Committee on Computational Linguistics\",\n url = \"https://aclanthology.org/2022.coling-1.311\",\n pages = \"3530--3538\",\n abstract = \"Online hate speech detection has become an important issue due to the growth of online content, but resources in languages other than English are extremely limited. We introduce K-MHaS, a new multi-label dataset for hate speech detection that effectively handles Korean language patterns. The dataset consists of 109k utterances from news comments and provides a multi-label classification using 1 to 4 labels, and handles subjectivity and intersectionality. We evaluate strong baselines on K-MHaS. KR-BERT with a sub-character tokenizer outperforms others, recognizing decomposed characters in each hate speech class.\",\n}\n",
|
5 |
+
"homepage": "https://github.com/adlnlp/K-MHaS",
|
6 |
+
"license": "cc-by-sa-4.0",
|
7 |
+
"features": {
|
8 |
+
"document": {
|
9 |
+
"dtype": "string",
|
10 |
+
"id": null,
|
11 |
+
"_type": "Value"
|
12 |
+
},
|
13 |
+
"labels": {
|
14 |
+
"feature": {
|
15 |
+
"num_classes": 9,
|
16 |
+
"names": [
|
17 |
+
"origin",
|
18 |
+
"physical",
|
19 |
+
"politics",
|
20 |
+
"profanity",
|
21 |
+
"age",
|
22 |
+
"gender",
|
23 |
+
"race",
|
24 |
+
"religion",
|
25 |
+
"not hate speech"
|
26 |
+
],
|
27 |
+
"names_file": null,
|
28 |
+
"id": null,
|
29 |
+
"_type": "ClassLabel"
|
30 |
+
},
|
31 |
+
"length": -1,
|
32 |
+
"id": null,
|
33 |
+
"_type": "Sequence"
|
34 |
+
}
|
35 |
+
},
|
36 |
+
"post_processed": null,
|
37 |
+
"supervised_keys": null,
|
38 |
+
"builder_name": "kmhas_korean_hate_speech",
|
39 |
+
"config_name": "default",
|
40 |
+
"version": {
|
41 |
+
"version_str": "1.0.0",
|
42 |
+
"description": null,
|
43 |
+
"major": 1,
|
44 |
+
"minor": 0,
|
45 |
+
"patch": 0
|
46 |
+
},
|
47 |
+
"splits": {
|
48 |
+
"train": {
|
49 |
+
"name": "train",
|
50 |
+
"num_bytes": 6845463,
|
51 |
+
"num_examples": 78977,
|
52 |
+
"dataset_name": "kmhas_korean_hate_speech"
|
53 |
+
},
|
54 |
+
"validation": {
|
55 |
+
"name": "validation",
|
56 |
+
"num_bytes": 748899,
|
57 |
+
"num_examples": 8776,
|
58 |
+
"dataset_name": "kmhas_korean_hate_speech"
|
59 |
+
},
|
60 |
+
"test": {
|
61 |
+
"name": "test",
|
62 |
+
"num_bytes": 1902352,
|
63 |
+
"num_examples": 421939,
|
64 |
+
"dataset_name": "kmhas_korean_hate_speech"
|
65 |
+
}
|
66 |
+
},
|
67 |
+
"download_checksums": {
|
68 |
+
"https://raw.githubusercontent.com/adlnlp/K-MHaS/main/data/kmhas_train.txt": {
|
69 |
+
"num_bytes": 6845463,
|
70 |
+
"checksum": "ca9145afc5fd70a2222094daa427e57a08b309cb42dcce7986528b44eb0e7008"
|
71 |
+
},
|
72 |
+
"https://raw.githubusercontent.com/adlnlp/K-MHaS/main/data/kmhas_valid.txt": {
|
73 |
+
"num_bytes": 748899,
|
74 |
+
"checksum": "cb0df9e3cd665125b554d4c5e6f48b0801d5535ead51269134de5b85ae469c18"
|
75 |
+
},
|
76 |
+
"https://raw.githubusercontent.com/adlnlp/K-MHaS/main/data/kmhas_test.txt": {
|
77 |
+
"num_bytes": 1902352,
|
78 |
+
"checksum": "9eaf470ee12c445817301d58672349500d6759516a730e879d36d6de17a2051a"
|
79 |
+
}
|
80 |
+
},
|
81 |
+
"download_size": 9496714,
|
82 |
+
"post_processing_size": null,
|
83 |
+
"dataset_size": 109692,
|
84 |
+
"size_in_bytes": 9496714
|
85 |
+
}
|
86 |
+
}
|