|
from typing import Literal, TypedDict |
|
|
|
import datasets |
|
import torch |
|
import monai.transforms |
|
import torchvision |
|
from torch.utils.data import IterableDataset |
|
|
|
import rsna_transforms |
|
|
|
|
|
class Segmentation3DDataset(IterableDataset): |
|
def __init__( |
|
self, |
|
split: Literal["train", "test"], |
|
streaming: bool = True, |
|
volume_transforms: monai.transforms.Compose = None, |
|
transform_configs: TypedDict( |
|
"", |
|
{ |
|
"crop_strategy": Literal["oversample", "center", "random", "none"], |
|
"voxel_spacing": tuple[float, float, float], |
|
"volume_size": tuple[int, int, int], |
|
"axcodes": str, |
|
}, |
|
) = { |
|
"crop_strategy": "oversample", |
|
"voxel_spacing": (3.0, 3.0, 3.0), |
|
"volume_size": (96, 96, 96), |
|
"axcodes": "RAS", |
|
}, |
|
test_size: float = 0.1, |
|
random_state: int = 42, |
|
): |
|
self.hf_dataset = datasets.load_dataset( |
|
"jherng/rsna-2023-abdominal-trauma-detection", |
|
"segmentation", |
|
split=split, |
|
streaming=streaming, |
|
num_proc=4 |
|
if not streaming |
|
else None, |
|
test_size=test_size, |
|
random_state=random_state, |
|
) |
|
|
|
self.volume_transforms = volume_transforms or rsna_transforms.volume_transforms( |
|
crop_strategy=transform_configs["crop_strategy"], |
|
voxel_spacing=transform_configs["voxel_spacing"], |
|
volume_size=transform_configs["volume_size"], |
|
axcodes=transform_configs["axcodes"], |
|
streaming=streaming, |
|
) |
|
|
|
self.yield_extra_info = True |
|
|
|
def __iter__(self): |
|
worker_info = torch.utils.data.get_worker_info() |
|
worker_id = worker_info.id if worker_info else -1 |
|
|
|
if isinstance(self.hf_dataset, datasets.Dataset): |
|
start_idx = worker_id if worker_id != -1 else 0 |
|
step_size = worker_info.num_workers if worker_id != -1 else 1 |
|
|
|
for i in range(start_idx, len(self.hf_dataset), step_size): |
|
data = self.hf_dataset[i] |
|
yield from self._process_one_sample(data, worker_id=worker_id) |
|
else: |
|
for i, data in enumerate(self.hf_dataset): |
|
yield from self._process_one_sample(data, worker_id=worker_id) |
|
|
|
def _process_one_sample(self, data, worker_id): |
|
data["img"] = data.pop("img_path") |
|
data["seg"] = data.pop("seg_path") |
|
data = self.volume_transforms(data) |
|
|
|
data = [data] if not isinstance(data, (list, tuple)) else data |
|
|
|
for crop in data: |
|
to_yield = { |
|
"img": crop["img"], |
|
"seg": crop["seg"], |
|
} |
|
if self.yield_extra_info: |
|
to_yield["worker_id"] = worker_id |
|
to_yield["series_id"] = data[0]["metadata"]["series_id"] |
|
yield to_yield |
|
|
|
|
|
class Classification3DDataset(IterableDataset): |
|
def __init__( |
|
self, |
|
split: Literal["train", "test"], |
|
streaming: bool = True, |
|
volume_transforms: monai.transforms.Compose = None, |
|
transform_configs: TypedDict( |
|
"", |
|
{ |
|
"crop_strategy": Literal["oversample", "center", "random", "none"], |
|
"voxel_spacing": tuple[float, float, float], |
|
"volume_size": tuple[int, int, int], |
|
"axcodes": str, |
|
}, |
|
) = { |
|
"crop_strategy": "oversample", |
|
"voxel_spacing": (3.0, 3.0, 3.0), |
|
"volume_size": (96, 96, 96), |
|
"axcodes": "RAS", |
|
}, |
|
test_size: float = 0.1, |
|
random_state: int = 42, |
|
): |
|
self.hf_dataset = datasets.load_dataset( |
|
"jherng/rsna-2023-abdominal-trauma-detection", |
|
"classification", |
|
split=split, |
|
streaming=streaming, |
|
num_proc=4 |
|
if not streaming |
|
else None, |
|
test_size=test_size, |
|
random_state=random_state, |
|
) |
|
|
|
self.volume_transforms = volume_transforms or rsna_transforms.volume_transforms( |
|
crop_strategy=transform_configs["crop_strategy"], |
|
voxel_spacing=transform_configs["voxel_spacing"], |
|
volume_size=transform_configs["volume_size"], |
|
axcodes=transform_configs["axcodes"], |
|
streaming=streaming, |
|
) |
|
|
|
self.yield_extra_info = True |
|
|
|
def __iter__(self): |
|
worker_info = torch.utils.data.get_worker_info() |
|
worker_id = worker_info.id if worker_info else -1 |
|
|
|
if isinstance(self.hf_dataset, datasets.Dataset): |
|
start_idx = worker_id if worker_id != -1 else 0 |
|
step_size = worker_info.num_workers if worker_id != -1 else 1 |
|
|
|
for i in range(start_idx, len(self.hf_dataset), step_size): |
|
data = self.hf_dataset[i] |
|
yield from self._process_one_sample(data, worker_id=worker_id) |
|
else: |
|
for i, data in enumerate(self.hf_dataset): |
|
yield from self._process_one_sample(data, worker_id=worker_id) |
|
|
|
def _process_one_sample(self, data, worker_id): |
|
img_data = self.volume_transforms( |
|
{"img": data["img_path"], "metadata": data["metadata"]} |
|
) |
|
img_data = [img_data] if not isinstance(img_data, (list, tuple)) else img_data |
|
|
|
for img in img_data: |
|
to_yield = { |
|
"img": img["img"], |
|
"bowel": data["bowel"], |
|
"extravasation": data["extravasation"], |
|
"kidney": data["kidney"], |
|
"liver": data["liver"], |
|
"spleen": data["spleen"], |
|
"any_injury": data["any_injury"], |
|
} |
|
|
|
if self.yield_extra_info: |
|
to_yield["worker_id"] = worker_id |
|
to_yield["series_id"] = data["metadata"]["series_id"] |
|
|
|
yield to_yield |
|
|
|
|
|
class MaskedClassification3DDataset(IterableDataset): |
|
def __init__( |
|
self, |
|
split: Literal["train", "test"], |
|
streaming: bool = True, |
|
volume_transforms: monai.transforms.Compose = None, |
|
transform_configs: TypedDict( |
|
"", |
|
{ |
|
"crop_strategy": Literal["oversample", "center", "random", "none"], |
|
"voxel_spacing": tuple[float, float, float], |
|
"volume_size": tuple[int, int, int], |
|
"axcodes": str, |
|
}, |
|
) = { |
|
"crop_strategy": "oversample", |
|
"voxel_spacing": (3.0, 3.0, 3.0), |
|
"volume_size": (96, 96, 96), |
|
"axcodes": "RAS", |
|
}, |
|
test_size: float = 0.1, |
|
random_state: int = 42, |
|
): |
|
self.hf_dataset = datasets.load_dataset( |
|
"jherng/rsna-2023-abdominal-trauma-detection", |
|
"classification-with-mask", |
|
split=split, |
|
streaming=streaming, |
|
num_proc=4 |
|
if not streaming |
|
else None, |
|
test_size=test_size, |
|
random_state=random_state, |
|
) |
|
|
|
self.volume_transforms = volume_transforms or rsna_transforms.volume_transforms( |
|
crop_strategy=transform_configs["crop_strategy"], |
|
voxel_spacing=transform_configs["voxel_spacing"], |
|
volume_size=transform_configs["volume_size"], |
|
axcodes=transform_configs["axcodes"], |
|
streaming=streaming, |
|
) |
|
|
|
self.yield_extra_info = True |
|
|
|
def __iter__(self): |
|
worker_info = torch.utils.data.get_worker_info() |
|
worker_id = worker_info.id if worker_info else -1 |
|
|
|
if isinstance(self.hf_dataset, datasets.Dataset): |
|
start_idx = worker_id if worker_id != -1 else 0 |
|
step_size = worker_info.num_workers if worker_id != -1 else 1 |
|
|
|
for i in range(start_idx, len(self.hf_dataset), step_size): |
|
data = self.hf_dataset[i] |
|
yield from self._process_one_sample(data, worker_id=worker_id) |
|
else: |
|
for i, data in enumerate(self.hf_dataset): |
|
yield from self._process_one_sample(data, worker_id=worker_id) |
|
|
|
def _process_one_sample(self, data, worker_id): |
|
img_seg_data = self.volume_transforms( |
|
{ |
|
"img": data["img_path"], |
|
"seg": data["seg_path"], |
|
"metadata": data["metadata"], |
|
} |
|
) |
|
img_seg_data = ( |
|
[img_seg_data] |
|
if not isinstance(img_seg_data, (list, tuple)) |
|
else img_seg_data |
|
) |
|
|
|
for img_seg in img_seg_data: |
|
to_yield = { |
|
"img": img_seg["img"], |
|
"seg": img_seg["seg"], |
|
"bowel": data["bowel"], |
|
"extravasation": data["extravasation"], |
|
"kidney": data["kidney"], |
|
"liver": data["liver"], |
|
"spleen": data["spleen"], |
|
"any_injury": data["any_injury"], |
|
} |
|
|
|
if self.yield_extra_info: |
|
to_yield["worker_id"] = worker_id |
|
to_yield["series_id"] = data["metadata"]["series_id"] |
|
|
|
yield to_yield |
|
|
|
|
|
class Segmentation2DDataset(IterableDataset): |
|
def __init__( |
|
self, |
|
split: Literal["train", "test"], |
|
streaming: bool = True, |
|
volume_transforms: monai.transforms.Compose = None, |
|
slice_transforms: torchvision.transforms.Compose = None, |
|
volume_transform_configs: TypedDict( |
|
"", |
|
{ |
|
"crop_strategy": Literal["oversample", "center", "random", "none"], |
|
"voxel_spacing": tuple[float, float, float], |
|
"volume_size": tuple[int, int, int], |
|
"axcodes": str, |
|
}, |
|
) = { |
|
"crop_strategy": "none", |
|
"voxel_spacing": (3.0, 3.0, 3.0), |
|
"volume_size": None, |
|
"axcodes": "RAS", |
|
}, |
|
slice_transform_configs: TypedDict( |
|
"", |
|
{ |
|
"crop_strategy": Literal["ten", "five", "center", "random"], |
|
"shorter_edge_length": int, |
|
"slice_size": tuple[int, int], |
|
}, |
|
) = { |
|
"crop_strategy": "center", |
|
"shorter_edge_length": 256, |
|
"slice_size": (224, 224), |
|
}, |
|
test_size: float = 0.1, |
|
random_state: int = 42, |
|
): |
|
self.hf_dataset = datasets.load_dataset( |
|
"jherng/rsna-2023-abdominal-trauma-detection", |
|
"segmentation", |
|
split=split, |
|
streaming=streaming, |
|
num_proc=4 |
|
if not streaming |
|
else None, |
|
test_size=test_size, |
|
random_state=random_state, |
|
) |
|
|
|
self.volume_transforms = volume_transforms or rsna_transforms.volume_transforms( |
|
crop_strategy=volume_transform_configs["crop_strategy"], |
|
voxel_spacing=volume_transform_configs["voxel_spacing"], |
|
volume_size=volume_transform_configs["volume_size"], |
|
axcodes=volume_transform_configs["axcodes"], |
|
streaming=streaming, |
|
) |
|
self.slice_transforms = slice_transforms or rsna_transforms.slice_transforms( |
|
crop_strategy=slice_transform_configs["crop_strategy"], |
|
shorter_edge_length=slice_transform_configs["shorter_edge_length"], |
|
slice_size=slice_transform_configs["slice_size"], |
|
) |
|
self.yield_extra_info = True |
|
|
|
def __iter__(self): |
|
worker_info = torch.utils.data.get_worker_info() |
|
worker_id = worker_info.id if worker_info else -1 |
|
|
|
if isinstance(self.hf_dataset, datasets.Dataset): |
|
start_idx = worker_id if worker_id != -1 else 0 |
|
step_size = worker_info.num_workers if worker_id != -1 else 1 |
|
|
|
for i in range(start_idx, len(self.hf_dataset), step_size): |
|
data = self.hf_dataset[i] |
|
yield from self._process_one_sample(data, worker_id=worker_id) |
|
else: |
|
for i, data in enumerate(self.hf_dataset): |
|
yield from self._process_one_sample(data, worker_id=worker_id) |
|
|
|
def _process_one_sample(self, data, worker_id): |
|
vol_data = self.volume_transforms( |
|
{ |
|
"img": data["img_path"], |
|
"seg": data["seg_path"], |
|
"metadata": data["metadata"], |
|
} |
|
) |
|
vol_data = [vol_data] if not isinstance(vol_data, (list, tuple)) else vol_data |
|
|
|
for vol in vol_data: |
|
slice_len = vol["img"].size()[-1] |
|
for i in range(slice_len): |
|
slice_img_data = self.slice_transforms(vol["img"][..., i]) |
|
slice_seg_data = self.slice_transforms(vol["seg"][..., i]) |
|
|
|
slice_img_data = ( |
|
[slice_img_data] |
|
if not isinstance(slice_img_data, (list, tuple)) |
|
else slice_img_data |
|
) |
|
slice_seg_data = ( |
|
[slice_seg_data] |
|
if not isinstance(slice_seg_data, (list, tuple)) |
|
else slice_seg_data |
|
) |
|
|
|
for slice_img, slice_seg in zip(slice_img_data, slice_seg_data): |
|
to_yield = { |
|
"img": slice_img, |
|
"seg": slice_seg, |
|
} |
|
if self.yield_extra_info: |
|
to_yield["worker_id"] = worker_id |
|
to_yield["series_id"] = data["metadata"]["series_id"] |
|
|
|
yield to_yield |
|
|
|
|
|
class Classification2DDataset(IterableDataset): |
|
def __init__( |
|
self, |
|
split: Literal["train", "test"], |
|
streaming: bool = True, |
|
volume_transforms: monai.transforms.Compose = None, |
|
slice_transforms: torchvision.transforms.Compose = None, |
|
volume_transform_configs: TypedDict( |
|
"", |
|
{ |
|
"crop_strategy": Literal["oversample", "center", "random", "none"], |
|
"voxel_spacing": tuple[float, float, float], |
|
"volume_size": tuple[int, int, int], |
|
"axcodes": str, |
|
}, |
|
) = { |
|
"crop_strategy": "none", |
|
"voxel_spacing": (3.0, 3.0, 3.0), |
|
"volume_size": None, |
|
"axcodes": "RAS", |
|
}, |
|
slice_transform_configs: TypedDict( |
|
"", |
|
{ |
|
"crop_strategy": Literal["ten", "five", "center", "random"], |
|
"shorter_edge_length": int, |
|
"slice_size": tuple[int, int], |
|
}, |
|
) = { |
|
"crop_strategy": "center", |
|
"shorter_edge_length": 256, |
|
"slice_size": (224, 224), |
|
}, |
|
test_size: float = 0.1, |
|
random_state: int = 42, |
|
): |
|
self.hf_dataset = datasets.load_dataset( |
|
"jherng/rsna-2023-abdominal-trauma-detection", |
|
"classification", |
|
split=split, |
|
streaming=streaming, |
|
num_proc=4 |
|
if not streaming |
|
else None, |
|
test_size=test_size, |
|
random_state=random_state, |
|
) |
|
|
|
self.volume_transforms = volume_transforms or rsna_transforms.volume_transforms( |
|
crop_strategy=volume_transform_configs["crop_strategy"], |
|
voxel_spacing=volume_transform_configs["voxel_spacing"], |
|
volume_size=volume_transform_configs["volume_size"], |
|
axcodes=volume_transform_configs["axcodes"], |
|
streaming=streaming, |
|
) |
|
self.slice_transforms = slice_transforms or rsna_transforms.slice_transforms( |
|
crop_strategy=slice_transform_configs["crop_strategy"], |
|
shorter_edge_length=slice_transform_configs["shorter_edge_length"], |
|
slice_size=slice_transform_configs["slice_size"], |
|
) |
|
self.yield_extra_info = True |
|
|
|
def __iter__(self): |
|
worker_info = torch.utils.data.get_worker_info() |
|
worker_id = worker_info.id if worker_info else -1 |
|
|
|
if isinstance(self.hf_dataset, datasets.Dataset): |
|
start_idx = worker_id if worker_id != -1 else 0 |
|
step_size = worker_info.num_workers if worker_id != -1 else 1 |
|
|
|
for i in range(start_idx, len(self.hf_dataset), step_size): |
|
data = self.hf_dataset[i] |
|
yield from self._process_one_sample(data, worker_id=worker_id) |
|
else: |
|
for i, data in enumerate(self.hf_dataset): |
|
yield from self._process_one_sample(data, worker_id=worker_id) |
|
|
|
def _process_one_sample(self, data, worker_id): |
|
vol_img_data = self.volume_transforms( |
|
{"img": data["img_path"], "metadata": data["metadata"]} |
|
) |
|
vol_img_data = ( |
|
[vol_img_data] |
|
if not isinstance(vol_img_data, (list, tuple)) |
|
else vol_img_data |
|
) |
|
|
|
for vol_img in vol_img_data: |
|
slice_len = vol_img["img"].size()[-1] |
|
for i in range(slice_len): |
|
slice_img_data = self.slice_transforms(vol_img["img"][..., i]) |
|
|
|
slice_img_data = ( |
|
[slice_img_data] |
|
if not isinstance(slice_img_data, (list, tuple)) |
|
else slice_img_data |
|
) |
|
|
|
for slice_img in slice_img_data: |
|
to_yield = { |
|
"img": slice_img, |
|
"bowel": data["bowel"], |
|
"extravasation": data["extravasation"], |
|
"kidney": data["kidney"], |
|
"liver": data["liver"], |
|
"spleen": data["spleen"], |
|
"any_injury": data["any_injury"], |
|
} |
|
if self.yield_extra_info: |
|
to_yield["worker_id"] = worker_id |
|
to_yield["series_id"] = data["metadata"]["series_id"] |
|
|
|
yield to_yield |
|
|
|
|
|
class MaskedClassification2DDataset(IterableDataset): |
|
def __init__( |
|
self, |
|
split: Literal["train", "test"], |
|
streaming: bool = True, |
|
volume_transforms: monai.transforms.Compose = None, |
|
slice_transforms: torchvision.transforms.Compose = None, |
|
volume_transform_configs: TypedDict( |
|
"", |
|
{ |
|
"crop_strategy": Literal["oversample", "center", "random", "none"], |
|
"voxel_spacing": tuple[float, float, float], |
|
"volume_size": tuple[int, int, int], |
|
"axcodes": str, |
|
}, |
|
) = { |
|
"crop_strategy": "none", |
|
"voxel_spacing": (3.0, 3.0, 3.0), |
|
"volume_size": None, |
|
"axcodes": "RAS", |
|
}, |
|
slice_transform_configs: TypedDict( |
|
"", |
|
{ |
|
"crop_strategy": Literal["ten", "five", "center", "random"], |
|
"shorter_edge_length": int, |
|
"slice_size": tuple[int, int], |
|
}, |
|
) = { |
|
"crop_strategy": "center", |
|
"shorter_edge_length": 256, |
|
"slice_size": (224, 224), |
|
}, |
|
test_size: float = 0.1, |
|
random_state: int = 42, |
|
): |
|
self.hf_dataset = datasets.load_dataset( |
|
"jherng/rsna-2023-abdominal-trauma-detection", |
|
"classification-with-mask", |
|
split=split, |
|
streaming=streaming, |
|
num_proc=4 |
|
if not streaming |
|
else None, |
|
test_size=test_size, |
|
random_state=random_state, |
|
) |
|
|
|
self.volume_transforms = volume_transforms or rsna_transforms.volume_transforms( |
|
crop_strategy=volume_transform_configs["crop_strategy"], |
|
voxel_spacing=volume_transform_configs["voxel_spacing"], |
|
volume_size=volume_transform_configs["volume_size"], |
|
axcodes=volume_transform_configs["axcodes"], |
|
streaming=streaming, |
|
) |
|
|
|
self.slice_transforms = slice_transforms or rsna_transforms.slice_transforms( |
|
crop_strategy=slice_transform_configs["crop_strategy"], |
|
shorter_edge_length=slice_transform_configs["shorter_edge_length"], |
|
slice_size=slice_transform_configs["slice_size"], |
|
) |
|
self.yield_extra_info = True |
|
|
|
def __iter__(self): |
|
worker_info = torch.utils.data.get_worker_info() |
|
worker_id = worker_info.id if worker_info else -1 |
|
|
|
if isinstance(self.hf_dataset, datasets.Dataset): |
|
start_idx = worker_id if worker_id != -1 else 0 |
|
step_size = worker_info.num_workers if worker_id != -1 else 1 |
|
|
|
for i in range(start_idx, len(self.hf_dataset), step_size): |
|
data = self.hf_dataset[i] |
|
yield from self._process_one_sample(data, worker_id=worker_id) |
|
else: |
|
for i, data in enumerate(self.hf_dataset): |
|
yield from self._process_one_sample(data, worker_id=worker_id) |
|
|
|
def _process_one_sample(self, data, worker_id): |
|
vol_data = self.volume_transforms( |
|
{ |
|
"img": data["img_path"], |
|
"seg": data["seg_path"], |
|
"metadata": data["metadata"], |
|
} |
|
) |
|
vol_data = [vol_data] if not isinstance(vol_data, (list, tuple)) else vol_data |
|
|
|
for vol in vol_data: |
|
slice_len = vol["img"].size()[-1] |
|
for i in range(slice_len): |
|
slice_img_data = self.slice_transforms(vol["img"][..., i]) |
|
slice_seg_data = self.slice_transforms(vol["seg"][..., i]) |
|
|
|
slice_img_data = ( |
|
[slice_img_data] |
|
if not isinstance(slice_img_data, (list, tuple)) |
|
else slice_img_data |
|
) |
|
slice_seg_data = ( |
|
[slice_seg_data] |
|
if not isinstance(slice_seg_data, (list, tuple)) |
|
else slice_seg_data |
|
) |
|
|
|
for slice_img, slice_seg in zip(slice_img_data, slice_seg_data): |
|
to_yield = { |
|
"img": slice_img, |
|
"seg": slice_seg, |
|
"bowel": data["bowel"], |
|
"extravasation": data["extravasation"], |
|
"kidney": data["kidney"], |
|
"liver": data["liver"], |
|
"spleen": data["spleen"], |
|
"any_injury": data["any_injury"], |
|
} |
|
if self.yield_extra_info: |
|
to_yield["worker_id"] = worker_id |
|
to_yield["series_id"] = data["metadata"]["series_id"] |
|
|
|
yield to_yield |
|
|