|
import urllib.parse |
|
|
|
import datasets |
|
import numpy as np |
|
import pandas as pd |
|
import requests |
|
|
|
_CITATION = """\ |
|
@inproceedings{Wu2020not, |
|
title={Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision}, |
|
author={Wu, Peng and Liu, jing and Shi, Yujia and Sun, Yujia and Shao, Fangtao and Wu, Zhaoyang and Yang, Zhiwei}, |
|
booktitle={European Conference on Computer Vision (ECCV)}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Dataset for the paper "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision". \ |
|
The dataset is downloaded from the authors' website (https://roc-ng.github.io/XD-Violence/). Hosting this dataset on HuggingFace \ |
|
is just to make it easier for my own project to use this dataset. Please cite the original paper if you use this dataset. |
|
""" |
|
|
|
_NAME = "xd-violence" |
|
|
|
_HOMEPAGE = f"https://huggingface.co/datasets/jherng/{_NAME}" |
|
|
|
_LICENSE = "MIT" |
|
|
|
_URL = f"https://huggingface.co/datasets/jherng/{_NAME}/resolve/main/data/" |
|
|
|
|
|
class XDViolenceConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for XD-Violence. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(XDViolenceConfig, self).__init__(**kwargs) |
|
|
|
|
|
class XDViolence(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
XDViolenceConfig( |
|
name="video", |
|
description="Video dataset.", |
|
), |
|
XDViolenceConfig( |
|
name="i3d_rgb", |
|
description="RGB features of the dataset extracted with pretrained I3D ResNet50 model (Pre-trained on ImageNet-1k; Transfer learning on Kinetics-400 dataset).", |
|
), |
|
XDViolenceConfig( |
|
name="swin_rgb", |
|
description="RGB features of the dataset extracted with pretrained Video Swin Transformer model (Pre-trained on ImageNet-1k; Transfer learning on Kinetics-400 dataset).", |
|
), |
|
XDViolenceConfig( |
|
name="c3d_rgb", |
|
description="RGB features of the dataset extracted with pretrained C3D model (Pre-trained on Sports-1M; Transfer learning on UCF-101 dataset).", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "video" |
|
BUILDER_CONFIG_CLASS = XDViolenceConfig |
|
|
|
CODE2IDX = { |
|
"A": 0, |
|
"B1": 1, |
|
"B2": 2, |
|
"B4": 3, |
|
"B5": 4, |
|
"B6": 5, |
|
"G": 6, |
|
} |
|
|
|
def _info(self): |
|
if self.config.name == "i3d_rgb": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"feature": datasets.Array2D(shape=(None, 2048), dtype="float32"), |
|
"binary_target": datasets.ClassLabel(names=["Non-violence", "Violence"]), |
|
"multilabel_target": datasets.Sequence( |
|
datasets.ClassLabel(names=["Normal", "Fighting", "Shooting", "Riot", "Abuse", "Car accident", "Explosion"]) |
|
), |
|
"frame_annotations": datasets.Sequence({"start": datasets.Value("int32"), "end": datasets.Value("int32")}), |
|
} |
|
) |
|
elif self.config.name == "swin_rgb": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"feature": datasets.Array2D(shape=(None, 768), dtype="float32"), |
|
"binary_target": datasets.ClassLabel(names=["Non-violence", "Violence"]), |
|
"multilabel_target": datasets.Sequence( |
|
datasets.ClassLabel(names=["Normal", "Fighting", "Shooting", "Riot", "Abuse", "Car accident", "Explosion"]) |
|
), |
|
"frame_annotations": datasets.Sequence({"start": datasets.Value("int32"), "end": datasets.Value("int32")}), |
|
} |
|
) |
|
elif self.config.name == "c3d_rgb": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"feature": datasets.Array2D(shape=(None, 4096), dtype="float32"), |
|
"binary_target": datasets.ClassLabel(names=["Non-violence", "Violence"]), |
|
"multilabel_target": datasets.Sequence( |
|
datasets.ClassLabel(names=["Normal", "Fighting", "Shooting", "Riot", "Abuse", "Car accident", "Explosion"]) |
|
), |
|
"frame_annotations": datasets.Sequence({"start": datasets.Value("int32"), "end": datasets.Value("int32")}), |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"path": datasets.Value("string"), |
|
"binary_target": datasets.ClassLabel(names=["Non-violence", "Violence"]), |
|
"multilabel_target": datasets.Sequence( |
|
datasets.ClassLabel(names=["Normal", "Fighting", "Shooting", "Riot", "Abuse", "Car accident", "Explosion"]) |
|
), |
|
"frame_annotations": datasets.Sequence({"start": datasets.Value("int32"), "end": datasets.Value("int32")}), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo(features=features, description=_DESCRIPTION, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
train_list_path = dl_manager.download_and_extract(urllib.parse.urljoin(_URL, "train_list.txt")) |
|
train_list = pd.read_csv(train_list_path, header=None, sep=" ", usecols=[0], names=["id"])["id"].apply(lambda x: x.rstrip(".mp4")).tolist() |
|
train_ids = [x.split("/")[1] for x in train_list] |
|
|
|
|
|
test_list_path = dl_manager.download_and_extract(urllib.parse.urljoin(_URL, "test_list.txt")) |
|
test_list = pd.read_csv(test_list_path, header=None, sep=" ", usecols=[0], names=["id"])["id"].apply(lambda x: x.rstrip(".mp4")).tolist() |
|
test_ids = [x.split("/")[1] for x in test_list] |
|
|
|
|
|
test_annotations_path = dl_manager.download_and_extract(urllib.parse.urljoin(_URL, "test_annotations.txt")) |
|
|
|
if self.config.name == "i3d_rgb": |
|
|
|
train_paths = dl_manager.download([urllib.parse.quote(urllib.parse.urljoin(_URL, f"i3d_rgb/{x}.npy"), safe=":/") for x in train_list]) |
|
test_paths = dl_manager.download([urllib.parse.quote(urllib.parse.urljoin(_URL, f"i3d_rgb/{x}.npy"), safe=":/") for x in test_list]) |
|
elif self.config.name == "swin_rgb": |
|
|
|
train_paths = dl_manager.download([urllib.parse.quote(urllib.parse.urljoin(_URL, f"swin_rgb/{x}.npy"), safe=":/") for x in train_list]) |
|
test_paths = dl_manager.download([urllib.parse.quote(urllib.parse.urljoin(_URL, f"swin_rgb/{x}.npy"), safe=":/") for x in test_list]) |
|
elif self.config.name == "c3d_rgb": |
|
|
|
train_paths = dl_manager.download([urllib.parse.quote(urllib.parse.urljoin(_URL, f"c3d_rgb/{x}.npy"), safe=":/") for x in train_list]) |
|
test_paths = dl_manager.download([urllib.parse.quote(urllib.parse.urljoin(_URL, f"c3d_rgb/{x}.npy"), safe=":/") for x in test_list]) |
|
else: |
|
|
|
train_paths = dl_manager.download([urllib.parse.quote(urllib.parse.urljoin(_URL, f"video/{x}.mp4"), safe=":/") for x in train_list]) |
|
test_paths = dl_manager.download([urllib.parse.quote(urllib.parse.urljoin(_URL, f"video/{x}.mp4"), safe=":/") for x in test_list]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"ids": train_ids, "paths": train_paths, "annotations_path": None}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"ids": test_ids, "paths": test_paths, "annotations_path": test_annotations_path}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, ids, paths, annotations_path): |
|
frame_annots_mapper = self._read_frame_annotations(annotations_path) if annotations_path else dict() |
|
labels = [self._extract_labels(f_id) for f_id in ids] |
|
|
|
if self.config.name == "i3d_rgb" or self.config.name == "swin_rgb" or self.config.name == "c3d_rgb": |
|
for key, (f_id, f_path, f_label) in enumerate(zip(ids, paths, labels)): |
|
binary, multilabel = f_label |
|
frame_annotations = frame_annots_mapper.get(f_id, []) |
|
feature = np.load(f_path) |
|
|
|
for crop_idx in range(feature.shape[1]): |
|
yield ( |
|
f"{key}-{crop_idx}", |
|
{ |
|
"id": f"{f_id}__{crop_idx}", |
|
"feature": np.squeeze(feature[:, crop_idx, :]).reshape((-1, feature.shape[-1])), |
|
"binary_target": binary, |
|
"multilabel_target": multilabel, |
|
"frame_annotations": frame_annotations, |
|
}, |
|
) |
|
else: |
|
for key, (f_id, f_path, f_label) in enumerate(zip(ids, paths, labels)): |
|
binary, multilabel = f_label |
|
frame_annotations = frame_annots_mapper.get(f_id, []) |
|
|
|
yield ( |
|
key, |
|
{ |
|
"id": f_id, |
|
"path": f_path, |
|
"binary_target": binary, |
|
"multilabel_target": multilabel, |
|
"frame_annotations": frame_annotations, |
|
}, |
|
) |
|
|
|
def _read_frame_annotations(self, path): |
|
mapper = {} |
|
is_url = urllib.parse.urlparse(path).scheme in ("http", "https") |
|
|
|
if is_url: |
|
with requests.get(path, stream=True) as r: |
|
r.raise_for_status() |
|
|
|
for line in r.iter_lines(): |
|
parts = line.decode("utf-8").strip().split(" ") |
|
f_id = parts[0].rstrip(".mp4") |
|
frame_annotations = [{"start": parts[start_idx], "end": parts[start_idx + 1]} for start_idx in range(1, len(parts), 2)] |
|
|
|
mapper[f_id] = frame_annotations |
|
|
|
else: |
|
with open(path, "r") as f: |
|
for line in f: |
|
parts = line.strip().split(" ") |
|
f_id = parts[0].rstrip(".mp4") |
|
frame_annotations = [{"start": parts[start_idx], "end": parts[start_idx + 1]} for start_idx in range(1, len(parts), 2)] |
|
|
|
mapper[f_id] = frame_annotations |
|
|
|
return mapper |
|
|
|
def _extract_labels(self, f_id): |
|
"""Extracts labels from a given file id.""" |
|
codes = f_id.split("_")[-1].split("-") |
|
binary = 1 if len(codes) > 1 else 0 |
|
multilabel = [self.CODE2IDX[code] for code in codes if code != "0"] |
|
return binary, multilabel |
|
|