xd-violence / xd-violence.py
jherng's picture
Update xd-violence.py
802ae53
raw
history blame
11.4 kB
import urllib.parse
import datasets
import numpy as np
import pandas as pd
import requests
_CITATION = """\
@inproceedings{Wu2020not,
title={Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision},
author={Wu, Peng and Liu, jing and Shi, Yujia and Sun, Yujia and Shao, Fangtao and Wu, Zhaoyang and Yang, Zhiwei},
booktitle={European Conference on Computer Vision (ECCV)},
year={2020}
}
"""
_DESCRIPTION = """\
Dataset for the paper "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision". \
The dataset is downloaded from the authors' website (https://roc-ng.github.io/XD-Violence/). Hosting this dataset on HuggingFace \
is just to make it easier for my own project to use this dataset. Please cite the original paper if you use this dataset.
"""
_NAME = "xd-violence"
_HOMEPAGE = f"https://huggingface.co/datasets/jherng/{_NAME}"
_LICENSE = "MIT"
_URL = f"https://huggingface.co/datasets/jherng/{_NAME}/resolve/main/data/"
class XDViolenceConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
"""BuilderConfig for XD-Violence.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(XDViolenceConfig, self).__init__(**kwargs)
class XDViolence(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
XDViolenceConfig(
name="video",
description="Video dataset.",
),
XDViolenceConfig(
name="i3d_rgb",
description="RGB features of the dataset extracted with pretrained I3D ResNet50 model (Pre-trained on ImageNet-1k; Transfer learning on Kinetics-400 dataset).",
),
XDViolenceConfig(
name="swin_rgb",
description="RGB features of the dataset extracted with pretrained Video Swin Transformer model (Pre-trained on ImageNet-1k; Transfer learning on Kinetics-400 dataset).",
),
XDViolenceConfig(
name="c3d_rgb",
description="RGB features of the dataset extracted with pretrained C3D model (Pre-trained on Sports-1M; Transfer learning on UCF-101 dataset).",
),
]
DEFAULT_CONFIG_NAME = "video"
BUILDER_CONFIG_CLASS = XDViolenceConfig
CODE2IDX = {
"A": 0, # Normal
"B1": 1, # Fighting
"B2": 2, # Shooting
"B4": 3, # Riot
"B5": 4, # Abuse
"B6": 5, # Car accident
"G": 6, # Explosion
}
def _info(self):
if self.config.name == "i3d_rgb":
features = datasets.Features(
{
"id": datasets.Value("string"),
"feature": datasets.Array2D(shape=(None, 2048), dtype="float32"), # (num_frames, feature_dim)
"binary_target": datasets.ClassLabel(names=["Non-violence", "Violence"]),
"multilabel_target": datasets.Sequence(
datasets.ClassLabel(names=["Normal", "Fighting", "Shooting", "Riot", "Abuse", "Car accident", "Explosion"])
),
"frame_annotations": datasets.Sequence({"start": datasets.Value("int32"), "end": datasets.Value("int32")}),
}
)
elif self.config.name == "swin_rgb":
features = datasets.Features(
{
"id": datasets.Value("string"),
"feature": datasets.Array2D(shape=(None, 768), dtype="float32"), # (num_frames, feature_dim)
"binary_target": datasets.ClassLabel(names=["Non-violence", "Violence"]),
"multilabel_target": datasets.Sequence(
datasets.ClassLabel(names=["Normal", "Fighting", "Shooting", "Riot", "Abuse", "Car accident", "Explosion"])
),
"frame_annotations": datasets.Sequence({"start": datasets.Value("int32"), "end": datasets.Value("int32")}),
}
)
elif self.config.name == "c3d_rgb":
features = datasets.Features(
{
"id": datasets.Value("string"),
"feature": datasets.Array2D(shape=(None, 4096), dtype="float32"), # (num_frames, feature_dim)
"binary_target": datasets.ClassLabel(names=["Non-violence", "Violence"]),
"multilabel_target": datasets.Sequence(
datasets.ClassLabel(names=["Normal", "Fighting", "Shooting", "Riot", "Abuse", "Car accident", "Explosion"])
),
"frame_annotations": datasets.Sequence({"start": datasets.Value("int32"), "end": datasets.Value("int32")}),
}
)
else: # default = "video"
features = datasets.Features(
{
"id": datasets.Value("string"),
"path": datasets.Value("string"),
"binary_target": datasets.ClassLabel(names=["Non-violence", "Violence"]),
"multilabel_target": datasets.Sequence(
datasets.ClassLabel(names=["Normal", "Fighting", "Shooting", "Riot", "Abuse", "Car accident", "Explosion"])
),
"frame_annotations": datasets.Sequence({"start": datasets.Value("int32"), "end": datasets.Value("int32")}),
}
)
return datasets.DatasetInfo(features=features, description=_DESCRIPTION, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION)
def _split_generators(self, dl_manager):
# Download train list
train_list_path = dl_manager.download_and_extract(urllib.parse.urljoin(_URL, "train_list.txt"))
train_list = pd.read_csv(train_list_path, header=None, sep=" ", usecols=[0], names=["id"])["id"].apply(lambda x: x.rstrip(".mp4")).tolist()
train_ids = [x.split("/")[1] for x in train_list] # remove subfolder prefix, e.g., "1-1004"
# Download test list
test_list_path = dl_manager.download_and_extract(urllib.parse.urljoin(_URL, "test_list.txt"))
test_list = pd.read_csv(test_list_path, header=None, sep=" ", usecols=[0], names=["id"])["id"].apply(lambda x: x.rstrip(".mp4")).tolist()
test_ids = [x.split("/")[1] for x in test_list]
# Download test annotation file
test_annotations_path = dl_manager.download_and_extract(urllib.parse.urljoin(_URL, "test_annotations.txt"))
if self.config.name == "i3d_rgb":
# Download features
train_paths = dl_manager.download([urllib.parse.quote(urllib.parse.urljoin(_URL, f"i3d_rgb/{x}.npy"), safe=":/") for x in train_list])
test_paths = dl_manager.download([urllib.parse.quote(urllib.parse.urljoin(_URL, f"i3d_rgb/{x}.npy"), safe=":/") for x in test_list])
elif self.config.name == "swin_rgb":
# Download features
train_paths = dl_manager.download([urllib.parse.quote(urllib.parse.urljoin(_URL, f"swin_rgb/{x}.npy"), safe=":/") for x in train_list])
test_paths = dl_manager.download([urllib.parse.quote(urllib.parse.urljoin(_URL, f"swin_rgb/{x}.npy"), safe=":/") for x in test_list])
elif self.config.name == "c3d_rgb":
# Download features
train_paths = dl_manager.download([urllib.parse.quote(urllib.parse.urljoin(_URL, f"c3d_rgb/{x}.npy"), safe=":/") for x in train_list])
test_paths = dl_manager.download([urllib.parse.quote(urllib.parse.urljoin(_URL, f"c3d_rgb/{x}.npy"), safe=":/") for x in test_list])
else:
# Download videos
train_paths = dl_manager.download([urllib.parse.quote(urllib.parse.urljoin(_URL, f"video/{x}.mp4"), safe=":/") for x in train_list])
test_paths = dl_manager.download([urllib.parse.quote(urllib.parse.urljoin(_URL, f"video/{x}.mp4"), safe=":/") for x in test_list])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"ids": train_ids, "paths": train_paths, "annotations_path": None},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"ids": test_ids, "paths": test_paths, "annotations_path": test_annotations_path},
),
]
def _generate_examples(self, ids, paths, annotations_path):
frame_annots_mapper = self._read_frame_annotations(annotations_path) if annotations_path else dict()
labels = [self._extract_labels(f_id) for f_id in ids] # Extract labels
if self.config.name == "i3d_rgb" or self.config.name == "swin_rgb" or self.config.name == "c3d_rgb":
for key, (f_id, f_path, f_label) in enumerate(zip(ids, paths, labels)):
binary, multilabel = f_label
frame_annotations = frame_annots_mapper.get(f_id, [])
feature = np.load(f_path)
for crop_idx in range(feature.shape[1]): # Loop over crops (5 crops)
yield (
f"{key}-{crop_idx}",
{
"id": f"{f_id}__{crop_idx}",
"feature": np.squeeze(feature[:, crop_idx, :]).reshape((-1, feature.shape[-1])),
"binary_target": binary,
"multilabel_target": multilabel,
"frame_annotations": frame_annotations,
},
)
else:
for key, (f_id, f_path, f_label) in enumerate(zip(ids, paths, labels)):
binary, multilabel = f_label
frame_annotations = frame_annots_mapper.get(f_id, [])
yield (
key,
{
"id": f_id,
"path": f_path,
"binary_target": binary,
"multilabel_target": multilabel,
"frame_annotations": frame_annotations,
},
)
def _read_frame_annotations(self, path):
mapper = {}
is_url = urllib.parse.urlparse(path).scheme in ("http", "https")
if is_url:
with requests.get(path, stream=True) as r:
r.raise_for_status()
for line in r.iter_lines():
parts = line.decode("utf-8").strip().split(" ")
f_id = parts[0].rstrip(".mp4")
frame_annotations = [{"start": parts[start_idx], "end": parts[start_idx + 1]} for start_idx in range(1, len(parts), 2)]
mapper[f_id] = frame_annotations
else:
with open(path, "r") as f:
for line in f:
parts = line.strip().split(" ")
f_id = parts[0].rstrip(".mp4")
frame_annotations = [{"start": parts[start_idx], "end": parts[start_idx + 1]} for start_idx in range(1, len(parts), 2)]
mapper[f_id] = frame_annotations
return mapper
def _extract_labels(self, f_id):
"""Extracts labels from a given file id."""
codes = f_id.split("_")[-1].split("-")
binary = 1 if len(codes) > 1 else 0
multilabel = [self.CODE2IDX[code] for code in codes if code != "0"]
return binary, multilabel