|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""ClarinPL Sejm/Senat automatic speech recognition dataset.""" |
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{marasek2014system, |
|
title={System for automatic transcription of sessions of the {P}olish {S}enate}, |
|
author={Marasek, Krzysztof and Kor{\v{z}}inek, Danijel and Brocki, {\L}ukasz}, |
|
journal={Archives of Acoustics}, |
|
volume={39}, |
|
number={4}, |
|
pages={501--509}, |
|
year={2014} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
A collection of 97 hours of parliamentary speeches published on the ClarinPL website |
|
|
|
Note that in order to limit the required storage for preparing this dataset, the audio |
|
is stored in the .wav format and is not converted to a float32 array. To convert the audio |
|
file to a float32 array, please make use of the `.map()` function as follows: |
|
|
|
```python |
|
import soundfile as sf |
|
|
|
def map_to_array(batch): |
|
speech_array, _ = sf.read(batch["file"]) |
|
batch["speech"] = speech_array |
|
return batch |
|
|
|
dataset = dataset.map(map_to_array, remove_columns=["file"]) |
|
``` |
|
""" |
|
|
|
_URL = "https://mowa.clarin-pl.eu/" |
|
_DS_URL = "http://mowa.clarin-pl.eu/korpusy/parlament/parlament.tar.gz" |
|
|
|
class ClarinPLSejmSenatASRConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for ClarinPLSejmSenatASR.""" |
|
|
|
def __init__(self, **kwargs): |
|
""" |
|
Args: |
|
data_dir: `string`, the path to the folder containing the files in the |
|
downloaded .tar |
|
citation: `string`, citation for the data set |
|
url: `string`, url for information about the data set |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(ClarinPLSejmSenatASRConfig, self).__init__(version=datasets.Version("2.1.0", ""), **kwargs) |
|
|
|
|
|
class ClarinPLSejmSenat(datasets.GeneratorBasedBuilder): |
|
"""ClarinPL Sejm/Senat dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
ClarinPLSejmSenatASRConfig(name="clean", description="'Clean' speech."), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"speaker_id": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=("file", "text"), |
|
homepage=_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
archive_path = dl_manager.download_and_extract(_DS_URL) |
|
archive_path = os.path.join(archive_path, "SejmSenat") |
|
audio_path = os.path.join(archive_path, "audio") |
|
return [ |
|
datasets.SplitGenerator(name="train", gen_kwargs={ |
|
"archive_path": os.path.join(archive_path, "train"), |
|
"audio_path": audio_path |
|
}), |
|
datasets.SplitGenerator(name="test", gen_kwargs={ |
|
"archive_path": os.path.join(archive_path, "test"), |
|
"audio_path": audio_path |
|
}), |
|
] |
|
|
|
def _generate_examples(self, archive_path, audio_path): |
|
"""Generate examples from a ClarinPL Sejm/Senat archive_path.""" |
|
with open(os.path.join(archive_path, "text"), "r", encoding="utf-8") as f: |
|
for line in f: |
|
line = line.strip() |
|
key, transcript = line.split(" ", 1) |
|
parts = key.split('-') |
|
dir = '-'.join(parts[0:2]) |
|
audio_file = f'{parts[2]}.wav' |
|
example = { |
|
"id": key, |
|
"speaker_id": parts[0], |
|
"file": os.path.join(audio_path, dir, audio_file), |
|
"text": transcript, |
|
} |
|
yield key, example |
|
|