eatd_corpus / eatd_corpus.py
jimregan's picture
add copyright header
b60a622
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
# Copyright 2023 Jim O'Regan
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import datasets
from datasets.tasks import AutomaticSpeechRecognition, AudioClassification
import os
_DESCRIPTION = """
An Emotional Audio-Textual Corpus
The EATD-Corpus is a dataset that consists of audio and text files of 162 volunteers who received counseling.
Training set contains data from 83 volunteers (19 depressed and 64 non-depressed).
Validation set contains data from 79 volunteers (11 depressed and 68 non-depressed).
"""
_URL = "https://github.com/speechandlanguageprocessing/ICASSP2022-Depression"
_CITE = """
@INPROCEEDINGS{9746569,
author={Shen, Ying and Yang, Huiyu and Lin, Lin},
booktitle={ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
title={Automatic Depression Detection: an Emotional Audio-Textual Corpus and A Gru/Bilstm-Based Model},
year={2022},
pages={6247-6251},
doi={10.1109/ICASSP43922.2022.9746569}
}
"""
class EATDDataset(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="speech", version=VERSION, description="Data for speech recognition"),
]
def _info(self):
features = datasets.Features(
{
"audio_raw": datasets.Audio(sampling_rate=16_000),
"audio": datasets.Audio(sampling_rate=16_000),
"id": datasets.Value("string"),
"text": datasets.Value("string"),
"raw_sds": datasets.Value("uint8"),
"sds_score": datasets.Value("float"),
"label": datasets.ClassLabel(names=["neutral", "negative", "positive"])
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_URL,
citation=_CITE,
task_templates=[
AutomaticSpeechRecognition(audio_column="audio", transcription_column="text"),
AudioClassification(audio_column="audio", label_column="label")
],
)
def _split_generators(self, dl_manager):
if hasattr(dl_manager, 'manual_dir') and dl_manager.manual_dir is not None:
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"split": "train",
"data_dir": data_dir,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"split": "valid",
"data_dir": data_dir,
},
),
]
def _generate_examples(
self, split, data_dir
):
basepath = Path(data_dir)
prefix = "v" if split == "valid" else "t"
for dir in basepath.glob(f"{prefix}_*"):
base_id = dir.name
with open(str(dir / "label.txt")) as labelf:
label = labelf.read().strip()
if label.endswith(".0"):
raw_sds = int(label[:-2])
else:
raw_sds = int(label)
with open(str(dir / "new_label.txt")) as labelf:
new_label = labelf.read().strip()
sds_score = float(new_label)
for polarity in ["neutral", "negative", "positive"]:
raw_audio = dir / f"{polarity}.wav"
proc_audio = dir / f"{polarity}_out.wav"
text_file = dir / f"{polarity}.txt"
with open(raw_audio, "rb") as rawf, open(proc_audio, "rb") as procf, open(text_file, "r") as textf:
text = textf.read().strip()
sid = f"{base_id}_{polarity}"
yield sid, {
"audio_raw": {
"bytes": rawf.read(),
"path": str(raw_audio),
},
"audio": {
"bytes": procf.read(),
"path": str(proc_audio),
},
"text": text,
"id": sid,
"raw_sds": raw_sds,
"sds_score": sds_score,
"label": polarity
}