|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
import datasets |
|
from datasets.tasks import AutomaticSpeechRecognition, AudioClassification |
|
import os |
|
|
|
|
|
_DESCRIPTION = """ |
|
An Emotional Audio-Textual Corpus |
|
|
|
The EATD-Corpus is a dataset that consists of audio and text files of 162 volunteers who received counseling. |
|
|
|
Training set contains data from 83 volunteers (19 depressed and 64 non-depressed). |
|
|
|
Validation set contains data from 79 volunteers (11 depressed and 68 non-depressed). |
|
""" |
|
|
|
|
|
_URL = "https://github.com/speechandlanguageprocessing/ICASSP2022-Depression" |
|
|
|
|
|
_CITE = """ |
|
@INPROCEEDINGS{9746569, |
|
author={Shen, Ying and Yang, Huiyu and Lin, Lin}, |
|
booktitle={ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, |
|
title={Automatic Depression Detection: an Emotional Audio-Textual Corpus and A Gru/Bilstm-Based Model}, |
|
year={2022}, |
|
pages={6247-6251}, |
|
doi={10.1109/ICASSP43922.2022.9746569} |
|
} |
|
""" |
|
|
|
|
|
class EATDDataset(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.1.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="speech", version=VERSION, description="Data for speech recognition"), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"audio_raw": datasets.Audio(sampling_rate=16_000), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"raw_sds": datasets.Value("uint8"), |
|
"sds_score": datasets.Value("float"), |
|
"label": datasets.ClassLabel(names=["neutral", "negative", "positive"]) |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_URL, |
|
citation=_CITE, |
|
task_templates=[ |
|
AutomaticSpeechRecognition(audio_column="audio", transcription_column="text"), |
|
AudioClassification(audio_column="audio", label_column="label") |
|
], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
if hasattr(dl_manager, 'manual_dir') and dl_manager.manual_dir is not None: |
|
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"split": "train", |
|
"data_dir": data_dir, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"split": "valid", |
|
"data_dir": data_dir, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples( |
|
self, split, data_dir |
|
): |
|
basepath = Path(data_dir) |
|
prefix = "v" if split == "valid" else "t" |
|
for dir in basepath.glob(f"{prefix}_*"): |
|
base_id = dir.name |
|
with open(str(dir / "label.txt")) as labelf: |
|
label = labelf.read().strip() |
|
if label.endswith(".0"): |
|
raw_sds = int(label[:-2]) |
|
else: |
|
raw_sds = int(label) |
|
with open(str(dir / "new_label.txt")) as labelf: |
|
new_label = labelf.read().strip() |
|
sds_score = float(new_label) |
|
for polarity in ["neutral", "negative", "positive"]: |
|
raw_audio = dir / f"{polarity}.wav" |
|
proc_audio = dir / f"{polarity}_out.wav" |
|
text_file = dir / f"{polarity}.txt" |
|
with open(raw_audio, "rb") as rawf, open(proc_audio, "rb") as procf, open(text_file, "r") as textf: |
|
text = textf.read().strip() |
|
sid = f"{base_id}_{polarity}" |
|
yield sid, { |
|
"audio_raw": { |
|
"bytes": rawf.read(), |
|
"path": str(raw_audio), |
|
}, |
|
"audio": { |
|
"bytes": procf.read(), |
|
"path": str(proc_audio), |
|
}, |
|
"text": text, |
|
"id": sid, |
|
"raw_sds": raw_sds, |
|
"sds_score": sds_score, |
|
"label": polarity |
|
} |
|
|