File size: 4,383 Bytes
09605cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fca89d
09605cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fca89d
 
09605cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import os
from glob import glob
from pathlib import Path

from typing import List

import numpy as np
import pandas as pd

from spacy.lang.ro import Romanian

pd.set_option('display.max_colwidth', None)
pd.set_option('display.max_columns', None)

base_path = Path("legalnero-data")
tokenizer = Romanian().tokenizer


def process_document(ann_file: str, text_file: Path, metadata: dict, tokenizer) -> List[dict]:
    """Processes one document (.ann file and .txt file) and returns a list of annotated sentences"""
    # read the ann file into a df
    ann_df = pd.read_csv(ann_file, sep="\t", header=None, names=["id", "entity_with_span", "entity_text"])
    sentences = open(text_file, 'r').readlines()

    # split into individual columns
    ann_df[["entity", "start", "end"]] = ann_df["entity_with_span"].str.split(" ", expand=True)
    ann_df.start = ann_df.start.astype(int)
    ann_df.end = ann_df.end.astype(int)

    not_found_entities = 0
    annotated_sentences = []
    current_start_index = 2  # somehow, here they start with 2 (who knows why)
    for sentence in sentences:
        ann_sent = {**metadata}

        doc = tokenizer(sentence)
        doc_start_index = current_start_index
        doc_end_index = current_start_index + len(sentence)
        current_start_index = doc_end_index + 1

        relevant_annotations = ann_df[(ann_df.start >= doc_start_index) & (ann_df.end <= doc_end_index)]
        for _, row in relevant_annotations.iterrows():
            sent_start_index = row["start"] - doc_start_index
            sent_end_index = row["end"] - doc_start_index
            char_span = doc.char_span(sent_start_index, sent_end_index, label=row["entity"], alignment_mode="expand")
            # ent_span = Span(doc, char_span.start, char_span.end, row["entity"])
            if char_span:
                doc.set_ents([char_span])
            else:
                not_found_entities += 1
                print(f"Could not find entity `{row['entity_text']}` in sentence `{sentence}`")

        ann_sent["words"] = [str(tok) for tok in doc]
        ann_sent["ner"] = [tok.ent_iob_ + "-" + tok.ent_type_ if tok.ent_type_ else "O" for tok in doc]

        annotated_sentences.append(ann_sent)
    if not_found_entities > 0:
        # NOTE: does not find entities only in 2 cases in total
        print(f"Did not find entities in {not_found_entities} cases")
    return annotated_sentences


def read_to_df():
    """Reads the different documents and saves metadata"""
    ann_files = glob(str(base_path / "ann_LEGAL_PER_LOC_ORG_TIME" / "*.ann"))
    sentences = []
    file_names = []
    for ann_file in ann_files:
        file_name = Path(ann_file).stem
        text_file = base_path / "text" / f"{file_name}.txt"
        file_names.append(file_name)
        metadata = {
            "file_name": file_name,
        }
        sentences.extend(process_document(ann_file, text_file, metadata, tokenizer))
    return pd.DataFrame(sentences), file_names


df, file_names = read_to_df()

# last word is either "\n" or "-----" ==> remove
df.words = df.words.apply(lambda x: x[:-1])
df.ner = df.ner.apply(lambda x: x[:-1])

# remove rows with containing only one word
df = df[df.words.map(len) > 1]

print(f"The final tagset (in IOB notation) is the following: `{list(df.ner.explode().unique())}`")

# split by file_name
num_fn = len(file_names)
train_fn, validation_fn, test_fn = np.split(np.array(file_names), [int(.8 * num_fn), int(.9 * num_fn)])

# Num file_names for each split: train (296), validation (37), test (37)
print(len(train_fn), len(validation_fn), len(test_fn))

train = df[df.file_name.isin(train_fn)]
validation = df[df.file_name.isin(validation_fn)]
test = df[df.file_name.isin(test_fn)]

# Num samples for each split: train (7552), validation (966), test (907)
print(len(train.index), len(validation.index), len(test.index))


# save splits
def save_splits_to_jsonl(config_name):
    # save to jsonl files for huggingface
    if config_name: os.makedirs(config_name, exist_ok=True)
    train.to_json(os.path.join(config_name, "train.jsonl"), lines=True, orient="records", force_ascii=False)
    validation.to_json(os.path.join(config_name, "validation.jsonl"), lines=True, orient="records", force_ascii=False)
    test.to_json(os.path.join(config_name, "test.jsonl"), lines=True, orient="records", force_ascii=False)


save_splits_to_jsonl("")