# Lint as: python3 """REBEL""" from __future__ import absolute_import, division, print_function import datasets import os import re import json import logging _DESCRIPTION = """\ REBEL-Portuguese is an REBEL adaptation for Portuguese. """ _URL = "https://huggingface.co/datasets/ju-resplande/rebel-pt/resolve/main/pt.zip" _LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)" _CITATION = """\ @inproceedings{huguet-cabot-navigli-2021-rebel, title = "REBEL: Relation Extraction By End-to-end Language generation", author = "Huguet Cabot, Pere-Llu{\'\i}s and Navigli, Roberto", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Online and in the Barceló Bávaro Convention Centre, Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf", } """ _HOMEPAGE = "https://github.com/ju-resplande/crocodile" class RebelConfig(datasets.BuilderConfig): """BuilderConfig for REBEL.""" def __init__(self, **kwargs): """BuilderConfig for REBEL. Args: **kwargs: keyword arguments forwarded to super. """ super(RebelConfig, self).__init__(**kwargs) class Rebel(datasets.GeneratorBasedBuilder): """Rebel 1.0""" BUILDER_CONFIGS = [ RebelConfig( name="REBEL", version=datasets.Version("1.0.0"), description=_DESCRIPTION, ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "title": datasets.Value("string"), "context": datasets.Value("string"), "triplets": datasets.Value("string"), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE, ) def _split_generators(self, dl_manager): if self.config.data_dir: data_dir = self.config.data_dir else: data_dir = dl_manager.download_and_extract(_URL) return [ datasets.SplitGenerator(name='pt', gen_kwargs={"filepath": os.path.join(data_dir, "pt.jsonl")}) #datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "en_train.jsonl")}), #datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir,"en_val.jsonl")}), #datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir,"en_test.jsonl")}), ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" logging.info("generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: for id_, row in enumerate(f): article = json.loads(row) prev_len = 0 if len(article['triples']) == 0: continue count = 0 for text_paragraph in article['text'].split('\n'): if len(text_paragraph) == 0: continue sentences = re.split(r'(?<=[.])\s', text_paragraph) text = '' for sentence in sentences: text += sentence + ' ' if any([entity['boundaries'][0] < len(text) + prev_len < entity['boundaries'][1] for entity in article['entities']]): continue entities = sorted([entity for entity in article['entities'] if prev_len < entity['boundaries'][1] <= len(text)+prev_len], key=lambda tup: tup['boundaries'][0]) decoder_output = ' ' for int_ent, entity in enumerate(entities): triplets = sorted([triplet for triplet in article['triples'] if triplet['subject'] == entity and prev_len< triplet['subject']['boundaries'][1]<=len(text) + prev_len and prev_len< triplet['object']['boundaries'][1]<=len(text)+ prev_len], key=lambda tup: tup['object']['boundaries'][0]) if len(triplets) == 0: continue decoder_output += entity['surfaceform'] + ' ' for triplet in triplets: decoder_output += triplet['object']['surfaceform'] + ' ' + triplet['predicate']['surfaceform'] + ' ' decoder_output = decoder_output[:-len(' ')] decoder_output += ' ' decoder_output = decoder_output[:-len(' ')] count += 1 prev_len += len(text) if len(decoder_output) == 0: text = '' continue text = re.sub('([\[\].,!?()])', r' \1 ', text.replace('()', '')) text = re.sub('\s{2,}', ' ', text) yield article['docid'] + '-' + str(count), { "title": article['title'], "context": text, "id": article['uri'] + '-' + str(count), "triplets": decoder_output, } text = ''