File size: 8,346 Bytes
4794d1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
'''
Reference: https://huggingface.co/datasets/pierresi/cord/blob/main/cord.py
'''
import json
import os
from pathlib import Path
import datasets
from PIL import Image
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@article{park2019cord,
title={CORD: A Consolidated Receipt Dataset for Post-OCR Parsing},
author={Park, Seunghyun and Shin, Seung and Lee, Bado and Lee, Junyeop and Surh, Jaeheung and Seo, Minjoon and Lee, Hwalsuk}
booktitle={Document Intelligence Workshop at Neural Information Processing Systems}
year={2019}
}
"""
_DESCRIPTION = """\
https://github.com/clovaai/cord/
"""
def load_image(image_path):
image = Image.open(image_path).convert("RGB")
w, h = image.size
return image, (w, h)
def normalize_bbox(bbox, size):
return [
int(1000 * bbox[0] / size[0]),
int(1000 * bbox[1] / size[1]),
int(1000 * bbox[2] / size[0]),
int(1000 * bbox[3] / size[1]),
]
def quad_to_box(quad):
# test 87 is wrongly annotated
box = (
max(0, quad["x1"]),
max(0, quad["y1"]),
quad["x3"],
quad["y3"]
)
if box[3] < box[1]:
bbox = list(box)
tmp = bbox[3]
bbox[3] = bbox[1]
bbox[1] = tmp
box = tuple(bbox)
if box[2] < box[0]:
bbox = list(box)
tmp = bbox[2]
bbox[2] = bbox[0]
bbox[0] = tmp
box = tuple(bbox)
return box
def _get_drive_url(url):
base_url = 'https://drive.google.com/uc?id='
split_url = url.split('/')
return base_url + split_url[5]
_URLS = [
_get_drive_url("https://drive.google.com/file/d/1MqhTbcj-AHXOqYoeoh12aRUwIprzTJYI/"),
_get_drive_url("https://drive.google.com/file/d/1wYdp5nC9LnHQZ2FcmOoC0eClyWvcuARU/")
# If you failed to download the dataset through the automatic downloader,
# you can download it manually and modify the code to get the local dataset.
# Or you can use the following links. Please follow the original LICENSE of CORD for usage.
# "https://layoutlm.blob.core.windows.net/cord/CORD-1k-001.zip",
# "https://layoutlm.blob.core.windows.net/cord/CORD-1k-002.zip"
]
class CordConfig(datasets.BuilderConfig):
"""BuilderConfig for CORD"""
def __init__(self, **kwargs):
"""BuilderConfig for CORD.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(CordConfig, self).__init__(**kwargs)
class Cord(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
CordConfig(name="cord", version=datasets.Version("1.0.0"), description="CORD dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"words": datasets.Sequence(datasets.Value("string")),
"bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=["O","B-MENU.NM","B-MENU.NUM","B-MENU.UNITPRICE","B-MENU.CNT","B-MENU.DISCOUNTPRICE","B-MENU.PRICE","B-MENU.ITEMSUBTOTAL","B-MENU.VATYN","B-MENU.ETC","B-MENU.SUB_NM","B-MENU.SUB_UNITPRICE","B-MENU.SUB_CNT","B-MENU.SUB_PRICE","B-MENU.SUB_ETC","B-VOID_MENU.NM","B-VOID_MENU.PRICE","B-SUB_TOTAL.SUBTOTAL_PRICE","B-SUB_TOTAL.DISCOUNT_PRICE","B-SUB_TOTAL.SERVICE_PRICE","B-SUB_TOTAL.OTHERSVC_PRICE","B-SUB_TOTAL.TAX_PRICE","B-SUB_TOTAL.ETC","B-TOTAL.TOTAL_PRICE","B-TOTAL.TOTAL_ETC","B-TOTAL.CASHPRICE","B-TOTAL.CHANGEPRICE","B-TOTAL.CREDITCARDPRICE","B-TOTAL.EMONEYPRICE","B-TOTAL.MENUTYPE_CNT","B-TOTAL.MENUQTY_CNT","I-MENU.NM","I-MENU.NUM","I-MENU.UNITPRICE","I-MENU.CNT","I-MENU.DISCOUNTPRICE","I-MENU.PRICE","I-MENU.ITEMSUBTOTAL","I-MENU.VATYN","I-MENU.ETC","I-MENU.SUB_NM","I-MENU.SUB_UNITPRICE","I-MENU.SUB_CNT","I-MENU.SUB_PRICE","I-MENU.SUB_ETC","I-VOID_MENU.NM","I-VOID_MENU.PRICE","I-SUB_TOTAL.SUBTOTAL_PRICE","I-SUB_TOTAL.DISCOUNT_PRICE","I-SUB_TOTAL.SERVICE_PRICE","I-SUB_TOTAL.OTHERSVC_PRICE","I-SUB_TOTAL.TAX_PRICE","I-SUB_TOTAL.ETC","I-TOTAL.TOTAL_PRICE","I-TOTAL.TOTAL_ETC","I-TOTAL.CASHPRICE","I-TOTAL.CHANGEPRICE","I-TOTAL.CREDITCARDPRICE","I-TOTAL.EMONEYPRICE","I-TOTAL.MENUTYPE_CNT","I-TOTAL.MENUQTY_CNT"]
)
),
"image": datasets.features.Image(),
}
),
supervised_keys=None,
citation=_CITATION,
homepage="https://github.com/clovaai/cord/",
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
"""Uses local files located with data_dir"""
downloaded_file = dl_manager.download_and_extract(_URLS)
# move files from the second URL together with files from the first one.
dest = Path(downloaded_file[0])/"CORD"
for split in ["train", "dev", "test"]:
for file_type in ["image", "json"]:
if split == "test" and file_type == "json":
continue
files = (Path(downloaded_file[1])/"CORD"/split/file_type).iterdir()
for f in files:
os.rename(f, dest/split/file_type/f.name)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": dest/"train"}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": dest/"dev"}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"filepath": dest/"test"}
),
]
def get_line_bbox(self, bboxs):
x = [bboxs[i][j] for i in range(len(bboxs)) for j in range(0, len(bboxs[i]), 2)]
y = [bboxs[i][j] for i in range(len(bboxs)) for j in range(1, len(bboxs[i]), 2)]
x0, y0, x1, y1 = min(x), min(y), max(x), max(y)
assert x1 >= x0 and y1 >= y0
bbox = [[x0, y0, x1, y1] for _ in range(len(bboxs))]
return bbox
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
ann_dir = os.path.join(filepath, "json")
img_dir = os.path.join(filepath, "image")
for guid, file in enumerate(sorted(os.listdir(ann_dir))):
words = []
bboxes = []
ner_tags = []
file_path = os.path.join(ann_dir, file)
with open(file_path, "r", encoding="utf8") as f:
data = json.load(f)
image_path = os.path.join(img_dir, file)
image_path = image_path.replace("json", "png")
image, size = load_image(image_path)
for item in data["valid_line"]:
cur_line_bboxes = []
line_words, label = item["words"], item["category"]
line_words = [w for w in line_words if w["text"].strip() != ""]
if len(line_words) == 0:
continue
if label == "other":
for w in line_words:
words.append(w["text"])
ner_tags.append("O")
cur_line_bboxes.append(normalize_bbox(quad_to_box(w["quad"]), size))
else:
words.append(line_words[0]["text"])
ner_tags.append("B-" + label.upper())
cur_line_bboxes.append(normalize_bbox(quad_to_box(line_words[0]["quad"]), size))
for w in line_words[1:]:
words.append(w["text"])
ner_tags.append("I-" + label.upper())
cur_line_bboxes.append(normalize_bbox(quad_to_box(w["quad"]), size))
# by default: --segment_level_layout 1
# if do not want to use segment_level_layout, comment the following line
cur_line_bboxes = self.get_line_bbox(cur_line_bboxes)
bboxes.extend(cur_line_bboxes)
# yield guid, {"id": str(guid), "words": words, "bboxes": bboxes, "ner_tags": ner_tags, "image": image}
yield guid, {"id": str(guid), "words": words, "bboxes": bboxes, "ner_tags": ner_tags,
"image": image} |