File size: 8,346 Bytes
4794d1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
'''
Reference: https://huggingface.co/datasets/pierresi/cord/blob/main/cord.py
'''


import json
import os
from pathlib import Path

import datasets

from PIL import Image

logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@article{park2019cord,
  title={CORD: A Consolidated Receipt Dataset for Post-OCR Parsing},
  author={Park, Seunghyun and Shin, Seung and Lee, Bado and Lee, Junyeop and Surh, Jaeheung and Seo, Minjoon and Lee, Hwalsuk}
  booktitle={Document Intelligence Workshop at Neural Information Processing Systems}
  year={2019}
}
"""
_DESCRIPTION = """\
https://github.com/clovaai/cord/
"""

def load_image(image_path):
    image = Image.open(image_path).convert("RGB")
    w, h = image.size
    return image, (w, h)

def normalize_bbox(bbox, size):
    return [
        int(1000 * bbox[0] / size[0]),
        int(1000 * bbox[1] / size[1]),
        int(1000 * bbox[2] / size[0]),
        int(1000 * bbox[3] / size[1]),
    ]

def quad_to_box(quad):
    # test 87 is wrongly annotated
    box = (
        max(0, quad["x1"]),
        max(0, quad["y1"]),
        quad["x3"],
        quad["y3"]
    )
    if box[3] < box[1]:
        bbox = list(box)
        tmp = bbox[3]
        bbox[3] = bbox[1]
        bbox[1] = tmp
        box = tuple(bbox)
    if box[2] < box[0]:
        bbox = list(box)
        tmp = bbox[2]
        bbox[2] = bbox[0]
        bbox[0] = tmp
        box = tuple(bbox)
    return box

def _get_drive_url(url):
    base_url = 'https://drive.google.com/uc?id='
    split_url = url.split('/')
    return base_url + split_url[5]

_URLS = [
    _get_drive_url("https://drive.google.com/file/d/1MqhTbcj-AHXOqYoeoh12aRUwIprzTJYI/"),
    _get_drive_url("https://drive.google.com/file/d/1wYdp5nC9LnHQZ2FcmOoC0eClyWvcuARU/")
    # If you failed to download the dataset through the automatic downloader,
    # you can download it manually and modify the code to get the local dataset.
    # Or you can use the following links. Please follow the original LICENSE of CORD for usage.
    # "https://layoutlm.blob.core.windows.net/cord/CORD-1k-001.zip",
    # "https://layoutlm.blob.core.windows.net/cord/CORD-1k-002.zip"
]

class CordConfig(datasets.BuilderConfig):
    """BuilderConfig for CORD"""
    def __init__(self, **kwargs):
        """BuilderConfig for CORD.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(CordConfig, self).__init__(**kwargs)

class Cord(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        CordConfig(name="cord", version=datasets.Version("1.0.0"), description="CORD dataset"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "words": datasets.Sequence(datasets.Value("string")),
                    "bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=["O","B-MENU.NM","B-MENU.NUM","B-MENU.UNITPRICE","B-MENU.CNT","B-MENU.DISCOUNTPRICE","B-MENU.PRICE","B-MENU.ITEMSUBTOTAL","B-MENU.VATYN","B-MENU.ETC","B-MENU.SUB_NM","B-MENU.SUB_UNITPRICE","B-MENU.SUB_CNT","B-MENU.SUB_PRICE","B-MENU.SUB_ETC","B-VOID_MENU.NM","B-VOID_MENU.PRICE","B-SUB_TOTAL.SUBTOTAL_PRICE","B-SUB_TOTAL.DISCOUNT_PRICE","B-SUB_TOTAL.SERVICE_PRICE","B-SUB_TOTAL.OTHERSVC_PRICE","B-SUB_TOTAL.TAX_PRICE","B-SUB_TOTAL.ETC","B-TOTAL.TOTAL_PRICE","B-TOTAL.TOTAL_ETC","B-TOTAL.CASHPRICE","B-TOTAL.CHANGEPRICE","B-TOTAL.CREDITCARDPRICE","B-TOTAL.EMONEYPRICE","B-TOTAL.MENUTYPE_CNT","B-TOTAL.MENUQTY_CNT","I-MENU.NM","I-MENU.NUM","I-MENU.UNITPRICE","I-MENU.CNT","I-MENU.DISCOUNTPRICE","I-MENU.PRICE","I-MENU.ITEMSUBTOTAL","I-MENU.VATYN","I-MENU.ETC","I-MENU.SUB_NM","I-MENU.SUB_UNITPRICE","I-MENU.SUB_CNT","I-MENU.SUB_PRICE","I-MENU.SUB_ETC","I-VOID_MENU.NM","I-VOID_MENU.PRICE","I-SUB_TOTAL.SUBTOTAL_PRICE","I-SUB_TOTAL.DISCOUNT_PRICE","I-SUB_TOTAL.SERVICE_PRICE","I-SUB_TOTAL.OTHERSVC_PRICE","I-SUB_TOTAL.TAX_PRICE","I-SUB_TOTAL.ETC","I-TOTAL.TOTAL_PRICE","I-TOTAL.TOTAL_ETC","I-TOTAL.CASHPRICE","I-TOTAL.CHANGEPRICE","I-TOTAL.CREDITCARDPRICE","I-TOTAL.EMONEYPRICE","I-TOTAL.MENUTYPE_CNT","I-TOTAL.MENUQTY_CNT"]
                        )
                    ),
                    "image": datasets.features.Image(),
                }
            ),
            supervised_keys=None,
            citation=_CITATION,
            homepage="https://github.com/clovaai/cord/",
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        """Uses local files located with data_dir"""
        downloaded_file = dl_manager.download_and_extract(_URLS)
        # move files from the second URL together with files from the first one.
        dest = Path(downloaded_file[0])/"CORD"
        for split in ["train", "dev", "test"]:
            for file_type in ["image", "json"]:
                if split == "test" and file_type == "json":
                    continue
                files = (Path(downloaded_file[1])/"CORD"/split/file_type).iterdir()
                for f in files:
                    os.rename(f, dest/split/file_type/f.name)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"filepath": dest/"train"}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION, gen_kwargs={"filepath": dest/"dev"}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"filepath": dest/"test"}
            ),
        ]

    def get_line_bbox(self, bboxs):
        x = [bboxs[i][j] for i in range(len(bboxs)) for j in range(0, len(bboxs[i]), 2)]
        y = [bboxs[i][j] for i in range(len(bboxs)) for j in range(1, len(bboxs[i]), 2)]

        x0, y0, x1, y1 = min(x), min(y), max(x), max(y)

        assert x1 >= x0 and y1 >= y0
        bbox = [[x0, y0, x1, y1] for _ in range(len(bboxs))]
        return bbox

    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        ann_dir = os.path.join(filepath, "json")
        img_dir = os.path.join(filepath, "image")
        for guid, file in enumerate(sorted(os.listdir(ann_dir))):
            words = []
            bboxes = []
            ner_tags = []
            file_path = os.path.join(ann_dir, file)
            with open(file_path, "r", encoding="utf8") as f:
                data = json.load(f)
            image_path = os.path.join(img_dir, file)
            image_path = image_path.replace("json", "png")
            image, size = load_image(image_path)
            for item in data["valid_line"]:
                cur_line_bboxes = []
                line_words, label = item["words"], item["category"]
                line_words = [w for w in line_words if w["text"].strip() != ""]
                if len(line_words) == 0:
                    continue
                if label == "other":
                    for w in line_words:
                        words.append(w["text"])
                        ner_tags.append("O")
                        cur_line_bboxes.append(normalize_bbox(quad_to_box(w["quad"]), size))
                else:
                    words.append(line_words[0]["text"])
                    ner_tags.append("B-" + label.upper())
                    cur_line_bboxes.append(normalize_bbox(quad_to_box(line_words[0]["quad"]), size))
                    for w in line_words[1:]:
                        words.append(w["text"])
                        ner_tags.append("I-" + label.upper())
                        cur_line_bboxes.append(normalize_bbox(quad_to_box(w["quad"]), size))
                # by default: --segment_level_layout 1
                # if do not want to use segment_level_layout, comment the following line
                cur_line_bboxes = self.get_line_bbox(cur_line_bboxes)
                bboxes.extend(cur_line_bboxes)
            # yield guid, {"id": str(guid), "words": words, "bboxes": bboxes, "ner_tags": ner_tags, "image": image}
            yield guid, {"id": str(guid), "words": words, "bboxes": bboxes, "ner_tags": ner_tags,
                         "image": image}