text
stringlengths
121
2.54k
summary
stringlengths
23
219
Rocky planets and moons experiencing solar wind sputtering are continuously supplying their enveloping exosphere with ejected neutral atoms. To understand the quantity and properties of the ejecta, well established Binary Collision Approximation Monte Carlo codes like TRIM with default settings are used predominantly. Improved models such as SDTrimSP have come forward and together with new experimental data the underlying assumptions have been challenged. We introduce a hybrid model, combining the previous surface binding approach with a new bulk binding model akin to Hofs\"ass & Stegmaier (2023). In addition, we expand the model implementation by distinguishing between free and bound components sourced from mineral compounds such as oxides or sulfides. The use of oxides and sulfides also enables the correct setting of the mass densities of minerals, which was previously limited to the manual setting of individual atomic densities of elements. All of the energies and densities used are thereby based on tabulated data, so that only minimal user input and no fitting of parameters are required. We found unprecedented agreement between the newly implemented hybrid model and previously published sputter yields for incidence angles up to 45{\deg} from surface normal. Good agreement is found for the angular distribution of mass sputtered from enstatite MgSiO$_3$ compared to latest experimental data. Energy distributions recreate trends of experimental data of oxidized metals. Similar trends are to be expected from future mineral experimental data. The model thus serves its purpose of widespread applicability and ease of use for modelers of rocky body exospheres.
New compound and hybrid binding energy sputter model for modeling purposes in agreement with experimental data
Quantum data is susceptible to decoherence induced by the environment and to errors in the hardware processing it. A future fault-tolerant quantum computer will use quantum error correction (QEC) to actively protect against both. In the smallest QEC codes, the information in one logical qubit is encoded in a two-dimensional subspace of a larger Hilbert space of multiple physical qubits. For each code, a set of non-demolition multi-qubit measurements, termed stabilizers, can discretize and signal physical qubit errors without collapsing the encoded information. Experimental demonstrations of QEC to date, using nuclear magnetic resonance, trapped ions, photons, superconducting qubits, and NV centers in diamond, have circumvented stabilizers at the cost of decoding at the end of a QEC cycle. This decoding leaves the quantum information vulnerable to physical qubit errors until re-encoding, violating a basic requirement for fault tolerance. Using a five-qubit superconducting processor, we realize the two parity measurements comprising the stabilizers of the three-qubit repetition code protecting one logical qubit from physical bit-flip errors. We construct these stabilizers as parallelized indirect measurements using ancillary qubits, and evidence their non-demolition character by generating three-qubit entanglement from superposition states. We demonstrate stabilizer-based quantum error detection (QED) by subjecting a logical qubit to coherent and incoherent bit-flip errors on its constituent physical qubits. While increased physical qubit coherence times and shorter QED blocks are required to actively safeguard quantum information, this demonstration is a critical step toward larger codes based on multiple parity measurements.
Detecting bit-flip errors in a logical qubit using stabilizer measurements
By an exotic algebraic structure on the affine space ${\bf C}^n$ we mean a smooth affine algebraic variety which is diffeomorphic to ${\bf R}^{2n}$ but not isomorphic to ${\bf C}^n$. This is a survey of the recent developement on the subject, which emphasizes its analytic aspects and points out some open problems.
On exotic algebraic structures on affine spaces
Some of the advances made in the literature to understand the phase transitions of quark matter in the presence of strong magnetic field and finite temperature (zero quark chemical potential) are reviewed. We start by discussing the physics behind the Magnetic catalysis (MC) at zero/finite temperature and then focus on the lattice predictions for inverse magnetic catalysis (IMC) at high temperature and strong magnetic fields. Possible explanations for the IMC are covered as well. Finally, we discuss recent efforts to modify QCD (quantum chromodynamics) effective models in order to reproduce the IMC observed on the lattice simulations. We emphasize the fact that applying thermo-magnetic effects on the coupling constant of the NJL model significantly improve the effectiveness of the NJL model to obtain a reasonable physical description of hot and magnetized quark matter being in agreement with lattice results.
Inverse magnetic catalysis -- how much do we know about?
Counterion adsorption on a flexible polyelectrolyte chain in a spherical cavity is considered by taking a "permuted" charge distribution on the chain so that the "adsorbed" counterions are allowed to move along the backbone. We compute the degree of ionization by using self-consistent field theory (SCFT) and compare with the previously developed variational theory. Analysis of various contributions to the free energy in both theories reveals that the equilibrium degree of ionization is attained mainly as an interplay of the adsorption energy of counterions on the backbone, the translational entropy of the small ions, and their correlated density fluctuations. Degree of ionization computed from SCFT is significantly lower than that from the variational formalism. The difference is entirely due to the density fluctuations of the small ions in the system, which are accounted for in the variational procedure. When these fluctuations are deliberately suppressed in the truncated variational procedure, there emerges a remarkable quantitative agreement in the various contributing factors to the equilibrium degree of ionization, in spite of the fundamental differences in the approximations and computational procedures used in these two schemes. Nevertheless, since the significant effects from density fluctuations of small ions are not captured by the SCFT, and due to the close agreement between SCFT and the other contributing factors in the more transparent variational procedure, the latter is a better computational tool for obtaining the degree of ionization.
Counterion adsorption on flexible polyelectrolytes: comparison of theories
In this work we investigate how a circumstellar disk affects the radiation emitted by an embedded star. We show correlations obtained from broad-band observations of bipolar nebulae indicating that an orientation effect is at play in these systems. The FIR radiation relative to total radiation increases with inclination while the NIR and BVR fractions decrease. This is an expected effect if we consider the system as being made up of a dense dusty disk being irradiated by a hot star. We calculate 2-D models to try and reproduce the observed behavior with different disk and star configurations.
Orientation effects in bipolar nebulae: Can disks do it?
Multi-target tracking is mainly challenged by the nonlinearity present in the measurement equation, and the difficulty in fast and accurate data association. To overcome these challenges, the present paper introduces a grid-based model in which the state captures target signal strengths on a known spatial grid (TSSG). This model leads to \emph{linear} state and measurement equations, which bypass data association and can afford state estimation via sparsity-aware Kalman filtering (KF). Leveraging the grid-induced sparsity of the novel model, two types of sparsity-cognizant TSSG-KF trackers are developed: one effects sparsity through $\ell_1$-norm regularization, and the other invokes sparsity as an extra measurement. Iterative extended KF and Gauss-Newton algorithms are developed for reduced-complexity tracking, along with accurate error covariance updates for assessing performance of the resultant sparsity-aware state estimators. Based on TSSG state estimates, more informative target position and track estimates can be obtained in a follow-up step, ensuring that track association and position estimation errors do not propagate back into TSSG state estimates. The novel TSSG trackers do not require knowing the number of targets or their signal strengths, and exhibit considerably lower complexity than the benchmark hidden Markov model filter, especially for a large number of targets. Numerical simulations demonstrate that sparsity-cognizant trackers enjoy improved root mean-square error performance at reduced complexity when compared to their sparsity-agnostic counterparts.
Tracking Target Signal Strengths on a Grid using Sparsity
Weighted Timed Games (WTG for short) are the most widely used model to describe controller synthesis problems involving real-time issues. Unfortunately, they are notoriously difficult, and undecidable in general. As a consequence, one-clock WTGs have attracted a lot of attention, especially because they are known to be decidable when only non-negative weights are allowed. However, when arbitrary weights are considered, despite several recent works, their decidability status was still unknown. In this paper, we solve this problem positively and show that the value function can be computed in exponential time (if weights are encoded in unary).
Decidability of One-Clock Weighted Timed Games with Arbitrary Weights
Spectroscopic and photometric observations of the peculiar object AM 2049-691 are presented here. Its systemic velocity is V(GSR) = (10956 +-30) km/s, and the derived distance (H(0) = 75 km/s/Mpc) results 146 Mpc. A bridge is observed between two very distinct nuclei whose separation is about 10 kpc, as well as two tails that emerge from the extremes SW and NE of the main body and extend up to 41 and 58 kpc respectively. The spectral characteristics of the all observed zones are typical of H II regions of low excitation. The internal reddening is quit high, particularly in the NE nucleus. All the derived equivalent widths of the H(alpha)+[N II] lines indicate enhanced star formation compared with isolated galaxies, specially in the NE nucleus; the equivalent width corresponding to the integrated spectrum reflects starburst activity in the whole object, and is compatible with a merger of two disk galaxies. All the observed characteristics of AM 2049-691 indicate it is a merger, where a overabundance of nitrogen is detected in one of the nuclei, which has the most evolved population and would be the most massive one. The detected total IR emission is not very high. The integrated total color B - V corresponds to a Sc-Scd galaxy and its average integrated population is about F7 type. Indicative B - V colors of the nuclei, corrected for internal absorption, are in agreement with the spectroscopic results. The central radial velocity dispersions at the nuclei suggest that the most massive galaxy would be the progenitor of the SW component. The observed radial velocity curve shows the presence of two subsystems, each one associated with a different nucleus.
The Merging System Am 2049-691
Trained human pilots or operators still stand out through their efficient, robust, and versatile skills in guidance tasks such as driving agile vehicles in spatial environments or performing complex surgeries. This research studies how humans learn a task environment for agile behavior. The hypothesis is that sensory-motor primitives previously described as interaction patterns and proposed as units of behavior for organization and planning of behavior provide elements of memory structure needed to efficiently learn task environments. The paper presents a modeling and analysis framework using the interaction patterns to formulate learning as a graph learning process and apply the framework to investigate and evaluate human learning and decision-making while operating in unknown environments. This approach emphasizes the effects of agent-environment dynamics (e.g., a vehicle controlled by a human operator), which is not emphasized in existing environment learning studies. The framework is applied to study human data collected from simulated first-person guidance experiments in an obstacle field. Subjects were asked to perform multiple trials and find minimum-time routes between prespecified start and goal locations without priori knowledge of the environment.
Human Learning of Unknown Environments in Agile Guidance Tasks
We report spatially and temporally resolved measurements of magnetic fields generated by petawatt laser-solid interactions with high spatial resolution, using optical polarimetry. The polarimetric measurements map the megagauss magnetic field profiles generated by the fast electron currents at the target rear. The magnetic fields at the rear of a 50 $\mu$m thick aluminum target exhibit distinct and unambiguous signatures of electron beam filamentation. These results are corroborated by hybrid simulations.
Micron-Scale Mapping of Megagauss Magnetic Fields in Petawatt Laser-Solid Interactions
We discuss a simple extension of the Standard Model (SM) that provides an explicit realization of the dark-matter (DM) neutrino-portal paradigm. The dark sector is composed of a scalar $ \Phi $ and a Dirac fermion $ \Psi $, with the latter assumed to be lighter than the former. These particles interact with the SM through the exchange of a set of heavy Dirac fermion mediators that are neutral under all local SM symmetries, and also under the dark-sector symmetry that stabilizes the $ \Psi $ against decay. We show that this model can accommodate all experimental and observational constraints provided the DM mass is below $\sim 35\, \gev $ or is in a resonant region of the Higgs or $Z$ boson. We also show that if the dark scalar and dark fermion are almost degenerate in mass, heavier DM fermions are not excluded. We note that in this scenario DM annihilation in the cores of astrophysical objects and the galactic halo produces a monochromatic neutrino beam of energy $ \mfe $, which provides a clear signature for this paradigm. Other experimental signatures are also discussed.
A realistic model for Dark Matter interactions in the neutrino portal paradigm
Reversible logic allows low power dissipating circuit design and founds its application in cryptography, digital signal processing, quantum and optical information processing. This paper presents a novel quantum cost efficient reversible BCD adder for nanotechnology based systems using PFAG gate. It has been demonstrated that the proposed design offers less hardware complexity and requires minimum number of garbage outputs than the existing counterparts. The remarkable property of the proposed designs is that its quantum realization is given in NMR technology.
Quantum Cost Efficient Reversible BCD Adder for Nanotechnology Based Systems
A limitation of many clustering algorithms is the requirement to tune adjustable parameters for each application or even for each dataset. Some techniques require an \emph{a priori} estimate of the number of clusters while density-based techniques usually require a scale parameter. Other parametric methods, such as mixture modeling, make assumptions about the underlying cluster distributions. Here we introduce a non-parametric clustering method that does not involve tunable parameters and only assumes that clusters are unimodal, in the sense that they have a single point of maximal density when projected onto any line, and that clusters are separated from one another by a separating hyperplane of relatively lower density. The technique uses a non-parametric variant of Hartigan's dip statistic using isotonic regression as the kernel operation repeated at every iteration. We compare the method against k-means++, DBSCAN, and Gaussian mixture methods and show in simulations that it performs better than these standard methods in many situations. The algorithm is suited for low-dimensional datasets with a large number of observations, and was motivated by the problem of "spike sorting" in neural electrical recordings. Source code is freely available.
Unimodal clustering using isotonic regression: ISO-SPLIT
We study how primordial non-Gaussianities affect the clustering of voids at large scales. We derive a formula of the bias of voids induced from the non-Gaussianities by making use of the functional integral method. In a similar way as of haloes, we find that primordial non-Gaussianities can generate scale-dependence in the bias of voids at large scales. In addition, we show that by observing the cross power spectrum of voids and haloes we could check the consistency relation between the non-linearity parameters f_NL and tau_NL. Large voids (high peak objects) would be good targets since the effects of non-Gaussianities are more prominent while the effects of "void-in-cloud" are less significant.
Void bias from primordial non-Gaussianities
We report measurements of charmonia produced in two-photon collisions and decaying to four-meson final states, where the meson is either a charged pion or a charged kaon. The analysis is based on a 395fb^{-1} data sample accumulated with the Belle detector at the KEKB electron-positron collider. We observe signals for the three C-even charmonia eta_c(1S), chi_{c0}(1P) and chi_{c2}(1P) in the pi^+pi^-pi^+pi^-, K^+K^-pi^+pi^- and K^+K^-K^+K^- decay modes. No clear signals for eta_c(2S) production are found in these decay modes. We have also studied resonant structures in charmonium decays to two-body intermediate meson resonances. We report the products of the two-photon decay width and the branching fractions, Gamma_{gamma gamma}B, for each of the charmonium decay modes.
Study of charmonia in four-meson final states produced in two-photon collisions
Persistent homology, an algebraic method for discerning structure in abstract data, relies on the construction of a sequence of nested topological spaces known as a filtration. Two-parameter persistent homology allows the analysis of data simultaneously filtered by two parameters, but requires a bifiltration -- a sequence of topological spaces simultaneously indexed by two parameters. To apply two-parameter persistence to digital images, we first must consider bifiltrations constructed from digital images, which have scarcely been studied. We introduce the value-offset bifiltration for grayscale digital image data. We present efficient algorithms for computing this bifiltration with respect to the taxicab distance and for approximating it with respect to the Euclidean distance. We analyze the runtime complexity of our algorithms, demonstrate the results on sample images, and contrast the bifiltrations obtained from real images with those obtained from random noise.
Value-Offset Bifiltrations for Digital Images
Chalcopyrite compounds are extensively explored for their exotic topological phases and associated phenomena in a variety of experiments. Here, we discuss the electrical transport properties of a direct energy gap semiconductor CdGeAs$_{2}$. The observed transverse magnetoresistance (MR) is found to be around 136% at a temperature of 1.8 K and a magnetic field of 14 T, following the semiclassical exponent MR $\sim$ $B^{2.18}$. The MR analysis exhibits a violation of the Kohler rule, suggesting the involvement of multiple carriers in the system. Below 15 K, with decreasing magnetic field, the MR increases, leading to the well known quantum interference phenomenon weak localization (WL). The analysis of the magnetoconductivity data based on the Hikami-Larkin-Nagaoka (HLN) model unveils three dimensional nature of the WL and the weak spin-orbit coupling in CdGeAs$_{2}$. The phase coherence length follows the $L_{\phi}$ $\sim$ $T^{-0.66}$ power law, which exhibits the 3D nature of the observed WL feature.
A Trivial Geometrical Phase of an Electron Wavefunction in a Direct Band Gap Semiconductor CdGeAs$_{2}$
We review several aspects of Yang-Mills theory (YMT) in two dimensions, related to its perturbative and topological properties. Consistency between light-front and equal-time formulations is thoroughly discussed.
Light-front vacuum and instantons in two dimensions
Undulator radiation from synchrotron light sources must be transported down a beamline from the source to the sample. A partially coherent photon beam may be represented in phase space using a Wigner function, and its transport may use some similar techniques as is familiar in particle beam transport. We describe this process in the case that the beamline is composed of linear focusing and defocusing sections as well as apertures. We present a compact representation of the beamline map involving linear transformations and convolutions. We create a 1:1 imaging system (4f system) with a single slit on the image plane and observe the radiation downstream to it. We propagate a Gaussian beam and undulator radiation down this sample beamline, drawing parameters from current and future ultra low emittance light sources. We derive an analytic expression for the partially coherent Gaussian case including passage through a single slit aperture. We benchmark the Wigner function calculation against the analytical expression and a partially coherent calculation in the Synchrotron Radiation Workshop (SRW) code.
Propagation of partially coherent radiation using Wigner functions
The quantum cascade laser (QCL) has evolved to be a compact, powerful source of coherent mid-infrared (mid-IR) light. However, its fast gain dynamics strongly restricts the formation of ultrashort pulses. As such, the shortest pulses reported so far were limited to a few picoseconds with some hundreds of milliwatts of peak power, strongly narrowing their applicability for time-resolved and nonlinear experiments. Here, we demonstrate an alternative approach capable of producing near-transform-limited sub-picosecond pulses with several watts of peak power. Starting from a frequency modulated phase-locked state, which most efficiently exploits the gain of the active region, ultrashort high peak power pulses are generated via external pulse compression. We assess their temporal nature by means of a novel optical sampling method, coherent beat note interferometry and interferometric autocorrelation. These results open new pathways for nonlinear physics in the mid-infrared.
Femtosecond pulses from a mid-infrared quantum cascade laser
We bound the excess risk of interpolating deep linear networks trained using gradient flow. In a setting previously used to establish risk bounds for the minimum $\ell_2$-norm interpolant, we show that randomly initialized deep linear networks can closely approximate or even match known bounds for the minimum $\ell_2$-norm interpolant. Our analysis also reveals that interpolating deep linear models have exactly the same conditional variance as the minimum $\ell_2$-norm solution. Since the noise affects the excess risk only through the conditional variance, this implies that depth does not improve the algorithm's ability to "hide the noise". Our simulations verify that aspects of our bounds reflect typical behavior for simple data distributions. We also find that similar phenomena are seen in simulations with ReLU networks, although the situation there is more nuanced.
Deep Linear Networks can Benignly Overfit when Shallow Ones Do
Latest experimental and evaluated $\alpha$-decay half-lives between 82$\leq$Z$\leq$118 have been used to modify two empirical formulas: (i) Horoi scaling law [J. Phys. G \textbf{30}, 945 (2004)], and Sobiczewski formula [Acta Phys. Pol. B \textbf{36}, 3095 (2005)] by adding asymmetry dependent terms ($I$ and $I^2$) and refitting of the coefficients. The results of these modified formulas are found with significant improvement while compared with other 21 formulas, and, therefore, are used to predict $\alpha$-decay half-lives with more precision in the unknown superheavy region. The formula of spontaneous fission (SF) half-life proposed by Bao \textit{et al.} [J. Phys. G \textbf{42}, 085101 (2015)] is further modified by using ground-state shell-plus-pairing correction taken from FRDM-2012 and using latest experimental and evaluated spontaneous fission half-lives between 82$\leq$Z$\leq$118. Using these modified formulas, contest between $\alpha$-decay and SF is probed for the nuclei within the range 112$\leq$Z$\leq$118 and consequently probable half-lives and decay modes are estimated. Potential decay chains of $^{286-302}$Og and $^{287-303}$119 (168$\leq$N$\leq$184: island of stability) are analyzed which are found in excellent agreement with available experimental data. In addition, four different machine learning models: XGBoost, Random Forest (RF), Decision Trees (DTs), and Multilayer Perceptron (MLP) neural network are used to train a predictor for $\alpha$-decay and SF half-lives prediction. The prediction of decay modes using XGBoost and MLP are found in excellent agreement with available experimental decay modes along with our predictions obtained by above mentioned modified formulas.
Modified empirical formulas and machine learning for $\alpha$-decay systematics
Formulas for longitudinal electric conductivity and dielectric permeability in the quantum non-degenerate collisional plasma with the frequency of collisions depending on momentum in Mermin' approach are received. The kinetic equation in momentum space in relaxation approximation is used. It is shown that when Planck's constant tends to zero, the deduced formula passes to the corresponding formula for classical plasma. It is shown also that when frequency of collisions of particles of plasma tends to zero (plasma passes to collisionless one), the deduced formula passes to the known Lindhard' formula received for collisionless plasmas. It is shown, that when frequency of collisions is a constant, the deduced formula for dielectric permeability passes in known Mermin' formula.
Longitudinal electric conductivity and dielectric permeability in quantum plasma with variable frequency of collisions in Mermin' approach
We construct a duality between several simple physical systems by showing that they are different aspects of the same quantum theory. Examples include the free relativistic massless particle and the hydrogen atom in any number of dimensions. The key is the gauging of the Sp(2) duality symmetry that treats position and momentum (x,p) as a doublet in phase space. As a consequence of the gauging, the Minkowski space-time vectors (x^\mu, p^\mu) get enlarged by one additional space-like and one additional time-like dimensions to (x^M,p^M). A manifest global symmetry SO(d,2) rotates (x^M,p^M) like d+2 dimensional vectors. The SO(d,2) symmetry of the parent theory may be interpreted as the familiar conformal symmetry of quantum field theory in Minkowski spacetime in one gauge, or as the dynamical symmetry of a totally different physical system in another gauge. Thanks to the gauge symmetry, the theory permits various choices of ``time'' which correspond to different looking Hamiltonians, while avoiding ghosts. Thus we demonstrate that there is a physical role for a spacetime with two times when taken together with a gauged duality symmetry that produces appropriate constraints.
Gauged Duality, Conformal Symmetry, and Spacetime with Two Times
In this paper, we derive optimal transmission policies for energy harvesting sensors to maximize the utility obtained over a finite horizon. First, we consider a single energy harvesting sensor, with discrete energy arrival process, and a discrete energy consumption policy. Under this model, we show that the optimal finite horizon policy is a threshold policy, and explicitly characterize the thresholds, and the thresholds can be precomputed using a recursion. Next, we address the case of multiple sensors, with only one of them allowed to transmit at any given time to avoid interference, and derive an explicit optimal policy for this scenario as well.
Finite-Horizon Optimal Transmission Policies for Energy Harvesting Sensors
We report on the first measurement of exclusive single-photon muoproduction on the proton by COMPASS using 160 GeV/$c$ polarized $\mu^+$ and $\mu^-$ beams of the CERN SPS impinging on a liquid hydrogen target. We determine the dependence of the average of the measured $\mu^+$ and $\mu^-$ cross sections for deeply virtual Compton scattering on the squared four-momentum transfer $t$ from the initial to the final final proton. The slope $B$ of the $t$-dependence is fitted with a single exponential function, which yields $B=(4.3 \ \pm \ 0.6_{\text{stat}}\_{- \ 0.3}^{+ \ 0.1}\big\rvert_{\text{sys}}) (\text{GeV}/c)^{-2}$. This result can be converted into an average transverse extension of partons in the proton, $\sqrt{\langle r_{\perp}^2 \rangle} = (0.58 \ \pm \ 0.04_{\text{stat}}\_{- \ 0.02}^{+ \ 0.01}\big\rvert_{\text{sys}})\text{fm}$. For this measurement, the average virtuality of the photon mediating the interaction is $\langle Q^2 \rangle = 1.8\,(\text{GeV/}c)^2$ and the average value of the Bjorken variable is $\langle x_{\text{Bj}} \rangle = 0.056$.
Transverse Extension of Partons in the Proton probed by Deeply Virtual Compton Scattering
Thermal history of the universe after big-bang nucleosynthesis (BBN) is well understood both theoretically and observationally, and recent cosmological observations also begin to reveal the inflationary dynamics. However, the epoch between inflation and BBN is scarcely known. In this paper we show that the detection of the stochastic gravitational wave background around 1Hz provides useful information about thermal history well before BBN. In particular, the reheating temperature of the universe may be determined by future space-based laser interferometer experiments such as DECIGO and/or BBO if it is around 10^{6-9} GeV, depending on the tensor-to-scalar ratio $r$ and dilution factor $F$.
Probing reheating temperature of the universe with gravitational wave background
We study the existence and uniqueness of Lp-bounded mild solutions for a class ofsemilinear stochastic evolutions equations driven by a real L\'evy processes withoutGaussian component not square integrable for instance the stable process through atruncation method by separating the big and small jumps together with the classicaland simple Banach fixed point theorem ; under local Lipschitz, Holder, linear growthconditions on the coefficients.
On bounded mild solutions for a class of semilinear stochastic evolution equation driven by stable process
We report the first detection of C$^{15}$N in diffuse molecular gas from a detailed examination of CN absorption lines in archival VLT/UVES spectra of stars probing local diffuse clouds. Absorption from the C$^{15}$N isotopologue is confidently detected (at $\gtrsim4\sigma$) in three out of the four directions studied and appears as a very weak feature between the main $^{12}$CN and $^{13}$CN absorption components. Column densities for each CN isotopologue are determined through profile fitting, after accounting for weak additional line-of-sight components of $^{12}$CN, which are seen in the absorption profiles of CH and CH$^+$ as well. The weighted mean value of C$^{14}$N/C$^{15}$N for the three sight lines with detections of C$^{15}$N is $274\pm18$. Since the diffuse molecular clouds toward our target stars have relatively high gas kinetic temperatures and relatively low visual extinctions, their C$^{14}$N/C$^{15}$N ratios should not be affected by chemical fractionation. The mean C$^{14}$N/C$^{15}$N ratio that we obtain should therefore be representative of the ambient $^{14}$N/$^{15}$N ratio in the local interstellar medium. Indeed, our mean value agrees well with that derived from millimeter-wave observations of CN, HCN, and HNC in local molecular clouds.
The C$^{14}$N/C$^{15}$N Ratio in Diffuse Molecular Clouds
Using numerical simulations, we investigate the gravitational evolution of filamentary molecular cloud structures and their condensation into dense protostellar cores. One possible process is the so called 'edge effect', the pile-up of matter at the end of the filament due to self-gravity. This effect is predicted by theory but only rarely observed. To get a better understanding of the underlying processes we used a simple analytic approach to describe the collapse and the corresponding collapse time. We identify a model of two distinct phases: The first phase is free fall dominated, due to the self-gravity of the filament. In the second phase, after the turning point, the collapse is balanced by the ram pressure, produced by the inside material of the filament, which leads to a constant collapse velocity. This approach reproduces the established collapse time of uniform density filaments and agrees well with our hydrodynamic simulations. In addition, we investigate the influence of different radial density profiles on the collapse. We find that the deviations compared to the uniform filament are less than 10%. Therefore, the analytic collapse model of the uniform density filament is an excellent general approach.
Filament collapse: a two phase process
The Pomeron, which dominates high energy elastic and diffractive hadronic processes, must be largely gluonic in nature. We use a recent picture of a scalar glueball/sigma system with coupling of the sigma to glue determined from experiment to predict strong peripheral sigma production seen in the p p $\pi^o\pi^o$ final state.
Peripheral Production of Sigmas in Proton Proton Collisions
We report the structural and magnetic properties of a new system LiRhMnO$_{4}$ (LRMO) through x-ray diffraction, bulk magnetization, heat capacity and $^{7}$Li nuclear magnetic resonance (NMR) measurements. LRMO crystallizes in the cubic space group $\mathit{Fd}$$\bar{3}$$\mathit{m}$. From the DC susceptibility data, we obtained the Curie-Weiss temperature $\mathrm{\theta}_{\mathrm{CW}}$ = -26 K and Curie constant $\mathit{C}$ = 1.79 Kcm$^{3}$/mol suggesting antiferromagnetic correlations among the magnetic Mn$^{4+}$ ions with an effective spin $\mathit{S}$ = $\frac{3}{2}$. At $\mathit{H}$ = 50 Oe, the field cooled and zero-field cooled magnetizations bifurcate at a freezing temperature, $T_{f}$ = 4.45 K, which yields the frustration parameter $\mathit{f=\frac{\mid\theta_{CW}\mid}{T_{f}}}>$5. AC susceptibility, shows a cusp-like peak at around $T_{f}$, with the peak position shifting as a function of the driving frequency, confirming a spin-glass-like transition in LRMO. LRMO also shows typical spin-glass characteristics such as memory effect, aging effect and relaxation. In the heat capacity, there is no sharp anomaly down to 2 K indicative of long-range ordering. The field sweep $^{7}$Li NMR spectra show broadening with decreasing temperature without any spectral line shift. The $^{7}$Li NMR spin-lattice and spin-spin relaxation rates also show anomalies due to spin freezing near $T_{f}$.
Structural and magnetic properties of a new cubic spinel LiRhMnO$_{4}$
A conventional approach to train neural ordinary differential equations (ODEs) is to fix an ODE solver and then learn the neural network's weights to optimize a target loss function. However, such an approach is tailored for a specific discretization method and its properties, which may not be optimal for the selected application and yield the overfitting to the given solver. In our paper, we investigate how the variability in solvers' space can improve neural ODEs performance. We consider a family of Runge-Kutta methods that are parameterized by no more than two scalar variables. Based on the solvers' properties, we propose an approach to decrease neural ODEs overfitting to the pre-defined solver, along with a criterion to evaluate such behaviour. Moreover, we show that the right choice of solver parameterization can significantly affect neural ODEs models in terms of robustness to adversarial attacks. Recently it was shown that neural ODEs demonstrate superiority over conventional CNNs in terms of robustness. Our work demonstrates that the model robustness can be further improved by optimizing solver choice for a given task. The source code to reproduce our experiments is available at https://github.com/juliagusak/neural-ode-metasolver.
Meta-Solver for Neural Ordinary Differential Equations
Temporal data, representing chronological observations of complex systems, has always been a typical data structure that can be widely generated by many domains, such as industry, medicine and finance. Analyzing this type of data is extremely valuable for various applications. Thus, different temporal data analysis tasks, eg, classification, clustering and prediction, have been proposed in the past decades. Among them, causal discovery, learning the causal relations from temporal data, is considered an interesting yet critical task and has attracted much research attention. Existing causal discovery works can be divided into two highly correlated categories according to whether the temporal data is calibrated, ie, multivariate time series causal discovery, and event sequence causal discovery. However, most previous surveys are only focused on the time series causal discovery and ignore the second category. In this paper, we specify the correlation between the two categories and provide a systematical overview of existing solutions. Furthermore, we provide public datasets, evaluation metrics and new perspectives for temporal data causal discovery.
Causal Discovery from Temporal Data: An Overview and New Perspectives
We investigate the surface width $W$ of solid-on-solid surfaces in the vicinity of the roughening temperature $T_r$. Above $T_r$, $W^2$ is expected to diverge with the system size $L$ like $\ln L$. However, close to $T_r$ a clean $\ln{L}$ behavior can only be seen on extremely large lattices. Starting from the Kosterlitz-Thouless renormalization group, we derive an improved formula that describes the small $L$ behavior on both sides of $T_r$. For the Discrete Gaussian model, we used the valleys-to-mountains-reflections cluster algorithm in order to simulate the fluctuating solid-on-solid surface. The base plane above which the surface is defined is an $L \times L$ square lattice. In the simulation we took $8\leq L\leq 256$. The improved formula fits the numerical results very well. {}From the analysis, we estimate the roughening temperature to be $T_r = 0.755(3)$.
The Solid-on-Solid Surface Width Around the Roughening Transition
Recent data from heavy ion collisions at RHIC show unexpectedly large near-angle correlations that broaden longitudinally with increasing centrality. The amplitude of this ridge-like correlation rises rapidly, reaches a maximum, and then falls in the most central collisions. In this letter we explain how this behavior can be explained as initial-state coordinate-space anisotropies converted into final-state momentum-space correlations. We propose $v_n^2/\epsilon_{n,\mathrm{part}}^{2}$ as a useful way to study length scales and provide a prediction for the ridge in Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=$ 2.76 TeV.
The Rise and Fall of the Ridge in Heavy Ion Collisions
Mean field calculations, based on the D1S, D1N and D1M parametrizations of the Gogny energy density functional, have been carried out to obtain the potential energy surfaces relevant to fission in several Ra isotopes with the neutron number 144 $\le$ N $\le$ 176. Inner and outer barrier heights as well as first and second isomer excitation energies are given. The existence of a well developed third minimum along the fission paths of Ra nuclei, is analyzed in terms of the energetics of the "fragments" defining such elongated configuration. The masses and charges of the fission fragments are studied as functions of the neutron number in the parent Ra isotope. The comparison between fission and $\alpha$-decay half-lives, reveals that the former becomes faster for increasing neutron numbers. Though there exists a strong variance of the results with respect to the parameters used in the computation of the spontaneous fission rate, a change in tendency is observed at N=164 with a steady increase that makes heavier neutron-rich Ra isotopes stable against fission, diminishing the importance of fission recycling in the r-process.
Microscopic description of fission in neutron-rich Radium isotopes with the Gogny energy density functional
We study the scattering of the light-flavor pseudoscalar mesons ($\pi, K, \eta$) off the ground-state charmed mesons ($D,D_s$) within chiral effective field theory. The recent lattice simulation results on various scattering lengths and the finite-volume spectra both in the moving and center-of-mass frames, most of which are obtained at unphysical meson masses, are used to constrain the free parameters in our theory. Explicit formulas to include the $S$- and $P$-wave mixing to determine the finite-volume energy levels are provided. After a successful reproduction of the lattice data, we perform a chiral extrapolation to predict the quantities with physical meson masses, including phase shifts, inelasticities, resonance pole positions and the corresponding residues from the scattering of the light pseudoscalar and charmed mesons.
Towards a precise determination of the scattering amplitudes of the charmed and light-flavor pseudoscalar mesons
Multishot Magnetic Resonance Imaging (MRI) has recently gained popularity as it accelerates the MRI data acquisition process without compromising the quality of final MR image. However, it suffers from motion artifacts caused by patient movements which may lead to misdiagnosis. Modern state-of-the-art motion correction techniques are able to counter small degree motion, however, their adoption is hindered by their time complexity. This paper proposes a Generative Adversarial Network (GAN) for reconstructing motion free high-fidelity images while reducing the image reconstruction time by an impressive two orders of magnitude.
Automating Motion Correction in Multishot MRI Using Generative Adversarial Networks
We study the current flow paths between two edges in a random resistor network on a $L\times L$ square lattice. Each resistor has resistance $e^{ax}$, where $x$ is a uniformly-distributed random variable and $a$ controls the broadness of the distribution. We find (a) the scaled variable $u\equiv L/a^\nu$, where $\nu$ is the percolation connectedness exponent, fully determines the distribution of the current path length $\ell$ for all values of $u$. For $u\gg 1$, the behavior corresponds to the weak disorder limit and $\ell$ scales as $\ell\sim L$, while for $u\ll 1$, the behavior corresponds to the strong disorder limit with $\ell\sim L^{d_{\scriptsize opt}}$, where $d_{\scriptsize opt} = 1.22\pm0.01$ is the optimal path exponent. (b) In the weak disorder regime, there is a length scale $\xi\sim a^\nu$, below which strong disorder and critical percolation characterize the current path.
Current Flow in Random Resistor Networks: The Role of Percolation in Weak and Strong Disorder
The probability distribution of percolation thresholds in finite lattices were first believed to follow a normal Gaussian behaviour. With increasing computer power and more efficient simulational techniques, this belief turned to a stretched exponential behaviour, instead. Here, based on a further improvement of Monte Carlo data, we show evidences that this question is not yet answered at all.
Are the Tails of Percolation Thresholds Gaussians ?
We construct a class of quadratic irrationals having continued fractions of period $n\geq2$ with "small" partial quotients for which certain integer multiples have continued fractions of period $1$, $2$ or $4$ with "large" partial quotients. We then show that numbers in the period of the new continued fraction are simple functions of the numbers in the periods of the original continued fraction. We give generalizations of some of the continued fractions and show that polynomials arising from the generalizations are related to Chebyshev and Fibonacci polynomials. We then show that some of these polynomials have a hyperbolic root distribution.
Multiples of long period small element continued fractions to short period large elements continued fractions
We give a probabilistic proof of relative Fatou's theorem for $(-\Delta)^{\alpha/2}$-harmonic functions (equivalently for symmetric $\alpha$-stable processes) in bounded $\kappa$-fat open set where $\alpha \in (0,2)$. That is, if $u$ is positive $(-\Delta)^{\alpha/2}$-harmonic function in a bounded $\kappa$-fat open set $D$ and $h$ is singular positive $(-\Delta)^{\alpha/2}$-harmonic function in $D$, then non-tangential limits of $u/h$ exist almost everywhere with respect to the Martin-representing measure of $h$. It is also shown that, under the gaugeability assumption, relative Fatou's theorem is true for operators obtained from the generator of the killed $\alpha$-stable process in bounded $\kappa$-fat open set $D$ through non-local Feynman-Kac transforms. As an application, relative Fatou's theorem for relativistic stable processes is also true if $D$ is bounded $C^{1,1}$-open set.
Relative Fatou's Theorem for $(-\Delta)^{\alpha/2}$-harmonic Functions in Bounded $\kappa$-fat Open Set
Dynamic population gratings (DPGs) in rare-earth doped fibers are prevalent devices in fiber lasers for the production of single-longitudinal-mode emission, Q-switched pulses, and wavelength self-sweeping regimes. This study presents a transition from Q-switched state to continuous wave (CW) state, accompanying irregular mode-hopping, in an erbium-doped fiber laser with a heavily-doped DPG centered at 1549.95 nm. Our results demonstrate that the transition between these two states can be achieved by adjusting the pump power. The repetition frequency of the Q-switched pulse increases monotonically with the increasing pump power, while the pulse duration initially narrows and then expands because the reduced peak intensity weakens the nonlinear effect. Additionally, modulation peaks are evident on both the Q-switched pulse train and the CW background, which are induced by the irregular mode-hopping caused by the DPG. Furthermore, we observe that the central wavelength fluctuates within a range of 0.05 nm. These results provide valuable insight into the DPG effect in heavily-doped fibers.
Observation of Q-switched and continuous wave regimes with mode-hopping in Er-doped fiber lasers incorporating a dynamic population grating
This paper is concerned with the regulation control of a one-dimensional reaction-diffusion equation in the presence of a state-delay in the reaction term. The objective is to achieve the PI regulation of the right Dirichlet trace with a command selected as the left Dirichlet trace. The control design strategy consists of the design of a PI controller on a finite dimensional truncated model obtained by spectral reduction. By an adequate selection of the number of modes of the original infinite-dimensional system, we show that the proposed control design procedure achieves both the exponential stabilization of the original infinite-dimensional system as well as the setpoint regulation of the right Dirichlet trace.
Integral action for setpoint regulation control of a reaction-diffusion equation in the presence of a state delay
The Berber, or Amazigh language family is a low-resource North African vernacular language spoken by the indigenous Berber ethnic group. It has its own unique alphabet called Tifinagh used across Berber communities in Morocco, Algeria, and others. The Afroasiatic language Berber is spoken by 14 million people, yet lacks adequate representation in education, research, web applications etc. For instance, there is no option of translation to or from Amazigh / Berber on Google Translate, which hosts over 100 languages today. Consequently, we do not find specialized educational apps, L2 (2nd language learner) acquisition, automated language translation, and remote-access facilities enabled in Berber. Motivated by this background, we propose a supervised approach called DaToBS for Detection and Transcription of Berber Signs. The DaToBS approach entails the automatic recognition and transcription of Tifinagh characters from signs in photographs of natural environments. This is achieved by self-creating a corpus of 1862 pre-processed character images; curating the corpus with human-guided annotation; and feeding it into an OCR model via the deployment of CNN for deep learning based on computer vision models. We deploy computer vision modeling (rather than language models) because there are pictorial symbols in this alphabet, this deployment being a novel aspect of our work. The DaToBS experimentation and analyses yield over 92 percent accuracy in our research. To the best of our knowledge, ours is among the first few works in the automated transcription of Berber signs from roadside images with deep learning, yielding high accuracy. This can pave the way for developing pedagogical applications in the Berber language, thereby addressing an important goal of outreach to underrepresented communities via AI in education.
Optical Character Recognition and Transcription of Berber Signs from Images in a Low-Resource Language Amazigh
We completely characterize the Crawford number attainment set and the numerical radius attainment set of a bounded linear operator on a Hilbert space. We study the intersection properties of the corresponding attainment sets of numerical radius, Crawford number, norm, minimum norm of a bounded linear operator defined on a normed space. Our study illustrates the similarities and the differences of the extremal properties of a bounded linear operator on a Hilbert space and a general normed space.
On numerical radius and Crawford number attainment sets of a bounded linear operator
It is shown that any generalized Kac-Moody Lie algebra g that has no mutually orthogonal imaginary simple roots can be written as the vector space direct sum of a Kac-Moody subalgebra and subalgebras isomorphic to free Lie algebras over certain modules for the Kac-Moody subalgebra. Also included is a detailed discussion of Borcherds' construction of the Monster Lie algebra from a vertex algebra and an elementary proof of Borcherds' theorem relating Lie algebras with `an almost positive definite bilinear form' to generalized Kac-Moody algebras. (Preprint version 1996)
Generalized Kac-Moody Lie algebras, free Lie algebras and the structure of the Monster Lie algebra
In this paper, we study the construction of the supersymmetric extensions of vertex algebras. In particular, for $N = n \in \mathbb{Z}_{+}$, we show the universal enveloping $N = n$ supersymmetric (SUSY) vertex algebra of an $N = n$ SUSY Lie conformal algebra can be extended to an $N = n' > n$ SUSY vertex algebra.
Supersymmetric extension of universal enveloping vertex algebras
We construct the first explicit (i.e., non-random) examples of Salem sets in $\mathbb{R}^n$ of arbitrary prescribed Hausdorff dimension. This completely resolves a problem proposed by Kahane more than 60 years ago. The construction is based on a form of Diophantine approximation in number fields.
Explicit Salem sets in $\mathbb{R}^n$
We rule out a certain $9$-dimensional algebra over an algebraically closed field to be the basic algebra of a block of a finite group, thereby completing the classification of basic algebras of dimension at most $12$ of blocks of finite group algebras.
A $9$-dimensional algebra which is not a block of a finite group
An elegant breadboard model of the LISA phasemeter is currently under development by a Danish-German consortium. The breadboard is build in the frame of an ESA technology development activity to demonstrate the feasibility and readiness of the LISA metrology baseline architecture. This article gives an overview about the breadboard design and its components, including the distribution of key functionalities.
Breadboard model of the LISA phasemeter
Information transport and processing by pure magnonic spin currents in insulators is a promising alternative to conventional charge-current driven spintronic devices. The absence of Joule heating as well as the reduced spin wave damping in insulating ferromagnets has been suggested to enable the implementation of efficient logic devices. After the proof of concept for a logic majority gate based on the superposition of spin waves has been successfully demonstrated, further components are required to perform complex logic operations. A key component is a switch that corresponds to a conventional magnetoresistive spin valve. Here, we report on magnetization orientation dependent spin signal detection in collinear magnetic multilayers with spin transport by magnonic spin currents. We find in Y3Fe5O12|CoO|Co tri-layers that the detected spin signal depends on the relative alignment of Y3Fe5O12 and Co. This demonstrates a spin valve behavior with an effect amplitude of 120% in our systems. We demonstrate the reliability of the effect and investigate the origin by both temperature and power dependent measurements, showing that spin rectification effects and a magnetic layer alignment dependent spin transport effect result in the measured signal.
Ferroic collinear multilayer magnon spin valve
We study a compactification of the moduli space of theta characteristics, giving a modular interpretation of the geometric points and describing the boundary stratification. This space is different from the moduli space of spin curves. The modular description and the boundary stratification of the new compactification are encoded by a tropical moduli space. We show that this tropical moduli space is a refinement of the moduli space of spin tropical curves. We describe explicitly the induced decomposition of its cones.
The moduli space of quasistable spin curves
Text classifiers are applied at scale in the form of one-size-fits-all solutions. Nevertheless, many studies show that classifiers are biased regarding different languages and dialects. When measuring and discovering these biases, some gaps present themselves and should be addressed. First, ``Does language, dialect, and topical content vary across geographical regions?'' and secondly ``If there are differences across the regions, do they impact model performance?''. We introduce a novel dataset called GeoOLID with more than 14 thousand examples across 15 geographically and demographically diverse cities to address these questions. We perform a comprehensive analysis of geographical-related content and their impact on performance disparities of offensive language detection models. Overall, we find that current models do not generalize across locations. Likewise, we show that while offensive language models produce false positives on African American English, model performance is not correlated with each city's minority population proportions. Warning: This paper contains offensive language.
Measuring Geographic Performance Disparities of Offensive Language Classifiers
We present a dynamical system that naturally exhibits two unstable attractors that are completely enclosed by each others basin volume. This counter-intuitive phenomenon occurs in networks of pulse-coupled oscillators with delayed interactions. We analytically and numerically investigate this phenomenon and clarify the mechanism underlying it: Upon continuously removing the non-invertibility of the system, the set of two unstable attractors becomes a set of two non-attracting saddle states that are heteroclinically connected to each other. This transition from a network of unstable attractors to a heteroclinic cycle constitutes a new type of bifurcation in dynamical systems.
Bifurcation From Networks of Unstable Attractors to Heteroclinic Switching
We present a new chiral expansion scheme for the nucleon-nucleon scattering amplitude which preserves unitarity exactly. Our effective field theory builds on the power counting rules for 2-nucleon reducible diagrams proposed in \cite{lutz}. We evaluate the leading order terms of the isospin one scattering amplitude and elaborate in detail on the $^1S_0$ phase shift. Our chiral description of the $^1S_0$-phase shift does compete in quality with modern phenomenological nucleon-nucleon potentials. We describe elastic and inelastic scattering quantitatively up to laboratory energies of $E_{\rm lab} \simeq 600$ MeV.
Effective chiral theory of nucleon-nucleon scattering
Context: Citations are a key measure of scientific performance in most fields, including software engineering. However, there is limited research that studies which characteristics of articles' metadata (title, abstract, keywords, and author list) are driving citations in this field. Objective: In this study, we propose a simple theoretical model for how citations come to be with respect to article metadata, we hypothesize theoretical linkages between metadata characteristics and citations of articles, and we empirically test these hypotheses. Method: We use multiple regression analyses to examine a data set comprising the titles, abstracts, keywords, and authors of 16,131 software engineering articles published between 1990 and 2020 in 20 highly influential software engineering venues. Results: We find that number of authors, number of keywords, number of question marks and dividers in the title, number of acronyms, abstract length, abstract propositional idea density, and corresponding authors in the core Anglosphere are significantly related to citations. Conclusion: Various characteristics of articles' metadata are linked to the frequency with which the corresponding articles are cited. These results partially confirm and partially go counter to prior findings in software engineering and other disciplines.
Text and Team: What Article Metadata Characteristics Drive Citations in Software Engineering?
We discuss the sensitivity of the CASSINI experiments to gravitational waves emitted by the in-spiral of compact binaries. We show that the maximum distance reachable by the instrument is $\sim 100$ Mpc. In particular, CASSINI can detect massive black hole binaries with chirp mass $\simgt 10^6 \Ms$ in the Virgo Cluster with signal-to-noise ratio between 5 and 30 and possible compact objects of mass $\simgt 30 \Ms$ orbiting the massive black hole that our Galactic Centre is likely to harbour.
Coalescing binaries and Doppler experiments
There has been a rapid progress in the task of Visual Question Answering with improved model architectures. Unfortunately, these models are usually computationally intensive due to their sheer size which poses a serious challenge for deployment. We aim to tackle this issue for the specific task of Visual Question Answering (VQA). A Convolutional Neural Network (CNN) is an integral part of the visual processing pipeline of a VQA model (assuming the CNN is trained along with entire VQA model). In this project, we propose an efficient and modular neural architecture for the VQA task with focus on the CNN module. Our experiments demonstrate that a sparsely activated CNN based VQA model achieves comparable performance to a standard CNN based VQA model architecture.
Learning Sparse Mixture of Experts for Visual Question Answering
This article is a survey on the local well-posedness problem for the general EPDiff equation. The main contribution concerns recent results on local existence of the geodesics on $\mathrm{Diff}(\mathbb{T}^{d})$ and $\mathrm{Diff}(\mathbb{R}^{d})$ when the inertia operator is a non-local Fourier multiplier.
Local well-posedness of the EPDiff equation: a survey
The antiferromagnetic Heisenberg model on the icosahedron, which consists of 20 edge-sharing triangles and belongs to the icosahedral $I_h$ symmetry group, presents unconventional properties at the classical and quantum level. These originate in the frustrated nature of the interactions between the spins. For classical spins the magnetization is discontinuous in a magnetic field. Here we examine the importance of the connectivity of the icosahedron for the appearance of the magnetization discontinuity, and also investigate the transition from the classical to the quantum limit. The influence of connectivity on the magnetic properties is revealed by considering the cluster as being made up of a closed strip of a triangular lattice with two additional spins attached. The classical magnetization discontinuity is shown to evolve continuously from the discontinuity effected by these two spins when they are uncoupled to the cluster. In the second part the transition from the classical to the quantum limit is examined by focusing on the low energy spectrum taking fully into account the spatial and the spin symmetry of the model in the characterization of the states. A symmetry analysis of the highly degenerate due to the connectivity lowest energy classical manifold identifies as its direct fingerprint the low energy quantum states for spin magnitude as low as $s=1$, with the latter following a tower of states behavior which relates to the icosahedron having a structure reminiscent of a depleted triangular lattice. The classical character of the AHM for small $s$ is also detected on the ground state energy and correlation functions. On the other hand the classical magnetization discontinuity in a field eventually disappears for small $s$, after a weak reentrant behavior.
Antiferromagnetic Heisenberg Model on the Icosahedron: Influence of Connectivity and the Transition from the Classical to the Quantum Limit
We have extended the time baseline for observations of the proper motions of radio sources in the Orion BN/KL region from 14.7 to 22.5 years. We present improved determinations for the sources BN and I. In addition, we address the proper motions of the double radio source n, that have been questioned in the literature. We confirm that all three sources are moving away at transverse velocities of tens of km s$^{-1}$ from a region in-between them, where they were located about 500 years ago. Source n exhibits a new component that we interpret as due to a one-sided ejection of free-free emitting plasma that took place after 2006.36. We used the highly accurate relative proper motions between sources BN and I to determine that their closest separation took place in the year 1475$\pm$6, when they were within $\sim$100 AU or less from each other in the plane of the sky.
The Proper Motions of the Double Radio Source n in the Orion BN/KL Region
We investigate the mechanical behavior of a confined granular packing of irregular polyhedral particles under repeated heating and cooling cycles by means of numerical simulations with the Non-Smooth Contact Dynamics method. Assuming a homogeneous temperature distribution as well as constant temperature rate, we study the effect of the container shape, and coefficients of thermal expansions on the pressure buildup at the confining walls and the density evolution. We observe that small changes in the opening angle of the confinement can lead to a drastic peak pressure reduction. Furthermore, the displacement fields over several thermal cycles are obtained and we discover the formation of convection cells inside the granular material having the shape of a torus. The root mean square of the vorticity is then calculated from the displacement fields and a quadratic dependency on the ratio of thermal expansion coefficients is established.
Behavior of confined granular beds under cyclic thermal loading
We study deposition dynamics of Na and Na$_2$ on an Ar substrate, both species neutral as well as charged. The system is modeled by a hierarchical approach describing the Na valence electrons by time-dependent density-functional theory while Na core, Ar atoms and their dynamical polarizability are treated by molecular dynamics. We explore effects of Na charge and initial kinetic energy of the impinging Na system. We find that neutral Na is captured into a loosely bound adsorbate state for sufficiently low impact energy. The charged monomers are more efficiently captured and the cation Na$^+$ even penetrates the surface layer. For charged dimers, we come to different final configurations depending on the process, direct deposit of Na$_2^+$ as a whole, or sequential deposit. In any case, charge dramatically amplifies the excitation of the matrix, in particular at the side of the Ar dipoles. The presence of a charge also enhances the binding to the surface and favours accumulation of larger compounds.
Deposition dynamics of Na monomers and dimers on an Ar(001) substrate
In order to backward integrate the orbits of Milky Way (MW) dwarf galaxies, much effort has been invested in recent years to constrain their initial phase-space coordinates. Yet equally important are the assumptions on the potential that the dwarf galaxies experience over time, especially given the fact that the MW is currently accreting the Large Magellanic Cloud (LMC). In this work, using a dark matter-only zoom-in simulation, we test whether the use of common parametric forms of the potential is adequate to successfully backward integrate the orbits of the subhaloes from their present-day positions. We parametrise the recovered orbits and compare them with those from the simulations. We find that simple symmetric parametric forms of the potential fail to capture the complexities and the inhomogeneities of the true potential experienced by the subhaloes. More specifically, modelling a recent massive accretion like that of the LMC as a sum of two spherical parametric potentials leads to substantial errors in the recovered parameters of the orbits. These errors rival those caused due to a) a 30\% uncertainty in the virial mass of the MW and b) not modelling the potential of the recently accreted massive satellite. Our work suggests that i) the uncertainties in the parameters of the recovered orbits of some MW dwarfs may be under-estimated and that ii) researchers should characterise the uncertainties inherent to their choice of integration techniques and assumptions of the potential against cosmological zoom-in simulations of the MW, which include a recently-accreted LMC.
Uncertainties associated with the backward integration of dwarf satellites using simple parametric potentials
In recent years, cosmic observational data have reported that our present universe is undergoing an accelerated expansion, which has been termed as mysterious "dark energy" phenomena, that is, the origin of dark energy has not been determined yet. According to our previous work that a new equation of state \cite{X.Shan and H.Chen1993} can be employed to explain the dark energy, and we are very interested in investigating the astrophysical scale properties of dark energy based on the new cosmological fluids given that the universe is filled with a dark energy fluid everywhere. Hence, in this paper, we study the exact solutions of spherically-symmetrical Einstein field equations describing wormholes supported by phantom energy from Shan-Chen (SC) fluids by considering an obvious relation between the transversal pressure and energy density which is different from our previous work \cite{111}. We have still investigated the important case $\psi\approx1$ which corresponds to the " saturation effect ", and this regime corresponds to an effective form of " asymptotic freedom ", occurring at cosmological rather than subnuclear scales. Then we find out two solutions by making some special choices for the shape function $b(r)$ and discuss the singularities of the solutions and find that the spacetimes are both geodesically incomplete. At the same time, it is worth noting that whether the solutions are geodesically complete or incomplete depends on the appropriate choice of the shape function $b(r)$ through our works. In addition, we match our interior solutions to the exterior Schwarzschild solutions and calculate out the total mass of the wormhole when $r\leq a$.
Modeling phantom energy wormholes from Shan-Chen fluids
In a previous paper [J. Chem. Phys. 121 4501 (2004)] a unique bipolar decomposition, Psi = Psi1 + Psi2 was presented for stationary bound states Psi of the one-dimensional Schroedinger equation, such that the components Psi1 and Psi2 approach their semiclassical WKB analogs in the large action limit. The corresponding bipolar quantum trajectories, as defined in the usual Bohmian mechanical formulation, are classical-like and well-behaved, even when Psi has many nodes, or is wildly oscillatory. A modification for discontinuous potential stationary stattering states was presented in a second paper [J. Chem. Phys. 124 034115 (2006)], whose generalization for continuous potentials is given here. The result is an exact quantum scattering methodology using classical trajectories. For additional convenience in handling the tunneling case, a constant velocity trajectory version is also developed.
Reconciling Semiclassical and Bohmian Mechanics: III. Scattering states for continuous potentials
Covering skill (a.k.a., option) discovery has been developed to improve the exploration of reinforcement learning in single-agent scenarios with sparse reward signals, through connecting the most distant states in the embedding space provided by the Fiedler vector of the state transition graph. However, these option discovery methods cannot be directly extended to multi-agent scenarios, since the joint state space grows exponentially with the number of agents in the system. Thus, existing researches on adopting options in multi-agent scenarios still rely on single-agent option discovery and fail to directly discover the joint options that can improve the connectivity of the joint state space of agents. In this paper, we show that it is indeed possible to directly compute multi-agent options with collaborative exploratory behaviors among the agents, while still enjoying the ease of decomposition. Our key idea is to approximate the joint state space as a Kronecker graph -- the Kronecker product of individual agents' state transition graphs, based on which we can directly estimate the Fiedler vector of the joint state space using the Laplacian spectrum of individual agents' transition graphs. This decomposition enables us to efficiently construct multi-agent joint options by encouraging agents to connect the sub-goal joint states which are corresponding to the minimum or maximum values of the estimated joint Fiedler vector. The evaluation based on multi-agent collaborative tasks shows that the proposed algorithm can successfully identify multi-agent options, and significantly outperforms prior works using single-agent options or no options, in terms of both faster exploration and higher cumulative rewards.
Learning Multi-agent Skills for Tabular Reinforcement Learning using Factor Graphs
Coupled oscillators such as lasers, OPO's and BEC polaritons can rapidly and efficiently dissipate into a stable phase locked state that can be mapped onto the minimal energy (ground state) of classical spin Hamiltonians. However, for degenerate or near degenerate ground state manifolds, statistical fair sampling is required to obtain a complete knowledge of the minimal energy state, which needs many repetitions of simulations under identical conditions. We show that with dissipatively coupled lasers such fair sampling can be achieved rapidly and accurately by exploiting the many longitudinal modes of each laser to form an ensemble of identical but independent simulators, acting in parallel. We fairly sampled the ground state manifold of square, triangular and Kagome lattices by measuring their coherence function identifying manifolds composed of a single, doubly degenerate, and highly degenerate ground states, respectively.
Rapid fair sampling of XY spin Hamiltonian with a laser simulator
Self-supervised learning has been widely applied to train high-quality vision transformers. Unleashing their excellent performance on memory and compute constraint devices is therefore an important research topic. However, how to distill knowledge from one self-supervised ViT to another has not yet been explored. Moreover, the existing self-supervised knowledge distillation (SSKD) methods focus on ConvNet based architectures are suboptimal for ViT knowledge distillation. In this paper, we study knowledge distillation of self-supervised vision transformers (ViT-SSKD). We show that directly distilling information from the crucial attention mechanism from teacher to student can significantly narrow the performance gap between both. In experiments on ImageNet-Subset and ImageNet-1K, we show that our method AttnDistill outperforms existing self-supervised knowledge distillation (SSKD) methods and achieves state-of-the-art k-NN accuracy compared with self-supervised learning (SSL) methods learning from scratch (with the ViT-S model). We are also the first to apply the tiny ViT-T model on self-supervised learning. Moreover, AttnDistill is independent of self-supervised learning algorithms, it can be adapted to ViT based SSL methods to improve the performance in future research. The code is here: https://github.com/wangkai930418/attndistill
Attention Distillation: self-supervised vision transformer students need more guidance
Let G be group; a finite p-subgroup S of G is a Sylow p-subgroup if every finite p-subgroup of G is conjugate to a subgroup of S. In this paper, we examine the relations between the fusion system over S which is given by conjugation in G and a certain chamber system C, on which G acts chamber transitively with chamber stabilizer N_G(S). Next, we introduce the notion of a fusion system with a parabolic family and we show that a chamber system can be associated to such a fusion system. We determine some conditions the chamber system has to fulfill in order to assure the saturation of the underlying fusion system. We give an application to fusion systems with parabolic families of classical type.
Saturated fusion systems with parabolic families
The entanglement content of superpositions of pairs of degenerate eigenstates of a bipartite system are considered in the case that both are also eigenstates of the $z$ component of the total angular momentum. It is shown that the von Neumann entropy of the state that is obtained tracing out one of the parts of the system has a definite convexity (concavity) as a function of the superposition parameter and that its convexity (concavity) can be predicted using a quantity of information that measures the entropy shared by the states at the extremes of the superposition. Several examples of two particle system, whose eigenfunctions and density matrices can be obtained exactly, are analyzed thoroughly.
Convexity properties of superpositions of degenerate bipartite eigenstates
We present our studies on jet-induced modifications of the characteristic of the bulk nuclear matter. To describe such a matter, we use efficient relativistic hydrodynamic simulations in (3+1) dimensions employing the Graphics Processing Unit (GPU) in the parallel programming framework. We use Cartesian coordinates in the calculations to ensure a high spatial resolution that is constant throughout the evolution of the system. We show our results on how jets modify the hydrodynamics fields and discuss the implications.
Jet-induced modifications of the characteristic of the bulk nuclear matter
In the present paper the asymptotic formulae for the first moment of the Riemann zeta-function on the critical line is proven under assumption of the Riemann Hypothesis.
On Asymptotic Formula for the First Moment of the Riemann Zeta-Function on the Critical Line
In this paper we propose a unified framework for structured prediction with latent variables which includes hidden conditional random fields and latent structured support vector machines as special cases. We describe a local entropy approximation for this general formulation using duality, and derive an efficient message passing algorithm that is guaranteed to converge. We demonstrate its effectiveness in the tasks of image segmentation as well as 3D indoor scene understanding from single images, showing that our approach is superior to latent structured support vector machines and hidden conditional random fields.
Efficient Structured Prediction with Latent Variables for General Graphical Models
We have investigated uniaxial and hydrostatic pressure effects on superconductivity in Fe1.07Te0.88S0.12 through magnetic-susceptibility measurements down to 1.8 K. The superconducting transition temperature Tc is enhanced by out-of-plane pressure (uniaxial pressure along the c-axis); the onset temperature of the superconductivity reaches 11.8 K at 0.4 GPa. In contrast, Tc is reduced by in-plane pressure (uniaxial pressure along the ab-plane) and hydrostatic pressure. Taking into account these results, it is inferred that the superconductivity of Fe1+yTe1-xSx is enhanced when the lattice constant c considerably shrinks. This implies that the relationship between Tc and the anion height for Fe1+yTe1-xSx is similar to that applicable to most iron-based superconductors. We consider the reduction of Tc by hydrostatic pressure due to suppression of spin fluctuations because the system moves away from antiferromagnetic ordering, and the enhancement of Tc by out-of-plane pressure due to the anion height effect on Tc.
Anisotropic pressure effects on superconductivity in Fe1+yTe1-xSx
We study the near horizon limit of a four dimensional extreme rotating black hole. The limiting metric is a completely nonsingular vacuum solution, with an enhanced symmetry group SL(2,R) x U(1). We show that many of the properties of this solution are similar to the AdS_2 x S^2 geometry arising in the near horizon limit of extreme charged black holes. In particular, the boundary at infinity is a timelike surface. This suggests the possibility of a dual quantum mechanical description. A five dimensional generalization is also discussed.
The Extreme Kerr Throat Geometry: A Vacuum Analog of AdS_2 x S^2
This paper studies equable parallelograms whose vertices lie on the integer lattice. Using Rosenberger's Theorem on generalised Markov equations, we show that the g.c.d. of the side lengths of such parallelograms can only be 3, 4 or 5, and in each of these cases the set of parallelograms naturally forms an infinite tree all of whose vertices have degree 4, bar the root. The paper then focuses on what we call Pythagorean equable parallelograms. These are lattice equable parallelograms whose complement in a circumscribing rectangle consists of two Pythagorean triangles. We prove that for these parallelograms the shortest side can only be 3, 4, 5, 6 or 10, and there are five infinite families of such parallelograms, given by solutions to corresponding Pell-like equations.
Lattice Equable Quadrilaterals I -- Parallelograms
The dynamics of Rydberg states of atomic hydrogen illuminated by resonant elliptically polarized microwaves is investigated both semiclassically and quantum mechanically in a simplified two-dimensional model of an atom. Semiclassical predictions for quasienergies of the system are found to be in a very good agreement with exact quantum data enabling a classification of possible types of motion and their dynamics with the change of the ellipticity of the microwaves. Particular attention is paid to the dynamics of the nonspreading wave packet states which are found to exist for an arbitrary microwave polarization.
H atom in elliptically polarized microwaves: Semiclassical versus quantum resonant dynamics
Hydrogen emission lines can provide extensive information about star-forming galaxies in both the local and high-redshift Universe. We present a detailed Lyman continuum (LyC), Lyman-alpha (Ly{\alpha}), and Balmer line (H{\alpha} and H\b{eta}) radiative transfer study of a high-resolution isolated Milky-Way simulation using the Arepo-RT radiation hydrodynamics code with the SMUGGLE galaxy formation model. The realistic framework includes stellar feedback, non-equilibrium thermochemistry, and dust grain evolution in the interstellar medium (ISM). We extend our Cosmic Ly{\alpha} Transfer (COLT) code with photoionization equilibrium Monte Carlo radiative transfer for self-consistent end-to-end (non-)resonant line predictions. Accurate LyC reprocessing to recombination emission requires modelling pre-absorption by dust (27.5%), helium ionization (8.7%), and anisotropic escape fractions (7.9%), as these reduce the available budget for hydrogen line emission (55.9%). We investigate the role of the multiphase dusty ISM, disc geometry, gas kinematics, and star formation activity in governing the physics of emission and escape, focusing on the time variability, gas phase structure, and spatial, spectral, and viewing angle dependence of the emergent photons. Isolated disc simulations are well-suited for comprehensive observational comparisons with local H{\alpha} surveys, but would require a proper cosmological circumgalactic medium (CGM) environment as well as less dust absorption and rotational broadening to serve as analogs for high-redshift Ly{\alpha} emitting galaxies. Future applications of our framework to next-generation cosmological simulations of galaxy formation including radiation-hydrodynamics that resolve <10 pc multiphase ISM and <1 kpc CGM structures will provide crucial insights and predictions for current and upcoming Ly{\alpha} observations.
The physics of Lyman-alpha escape from disc-like galaxies
In this paper, we study two classes of Kirchhoff type problems set on a double phase framework. That is, the functional space where finding solutions coincides with the Musielak-Orlicz-Sobolev space $W^{1,\mathcal H}_0(\Omega)$, with modular function $\mathcal H$ related to the so called double phase operator. Via a variational approach, we provide existence and multiplicity results.
Existence and multiplicity results for Kirchhoff type problems on a double phase setting
We study the problem of realizing the full spectrum of bipedal locomotion on a real robot with sim-to-real reinforcement learning (RL). A key challenge of learning legged locomotion is describing different gaits, via reward functions, in a way that is intuitive for the designer and specific enough to reliably learn the gait across different initial random seeds or hyperparameters. A common approach is to use reference motions (e.g. trajectories of joint positions) to guide learning. However, finding high-quality reference motions can be difficult and the trajectories themselves narrowly constrain the space of learned motion. At the other extreme, reference-free reward functions are often underspecified (e.g. move forward) leading to massive variance in policy behavior, or are the product of significant reward-shaping via trial-and-error, making them exclusive to specific gaits. In this work, we propose a reward-specification framework based on composing simple probabilistic periodic costs on basic forces and velocities. We instantiate this framework to define a parametric reward function with intuitive settings for all common bipedal gaits - standing, walking, hopping, running, and skipping. Using this function we demonstrate successful sim-to-real transfer of the learned gaits to the bipedal robot Cassie, as well as a generic policy that can transition between all of the two-beat gaits.
Sim-to-Real Learning of All Common Bipedal Gaits via Periodic Reward Composition
We study the problem of cooperative localization of a large network of nodes in integer-coordinated unit disk graphs, a simplified but useful version of general random graph. Exploiting the property that the radius $r$ sets clear cut on the connectivity of two nodes, we propose an essential philosophy that "no connectivity is also useful information just like the information being connected" in unit disk graphs. Exercising this philosophy, we show that the conventional network localization problem can be re-formulated to significantly reduce the search space, and that global rigidity, a necessary and sufficient condition for the existence of unique solution in general graphs, is no longer necessary. While the problem is still NP-hard, we show that a (depth-first) tree-search algorithm with memory O(N) ($N$ is the network size) can be developed, and for practical setups, the search complexity and speed is very manageable, and is magnitudes less than the conventional problem, especially when the graph is sparse or when only very limited anchor nodes are available.
Network Localization on Unit Disk Graphs
In this paper, we study the problem of robust sparse mean estimation, where the goal is to estimate a $k$-sparse mean from a collection of partially corrupted samples drawn from a heavy-tailed distribution. Existing estimators face two critical challenges in this setting. First, they are limited by a conjectured computational-statistical tradeoff, implying that any computationally efficient algorithm needs $\tilde\Omega(k^2)$ samples, while its statistically-optimal counterpart only requires $\tilde O(k)$ samples. Second, the existing estimators fall short of practical use as they scale poorly with the ambient dimension. This paper presents a simple mean estimator that overcomes both challenges under moderate conditions: it runs in near-linear time and memory (both with respect to the ambient dimension) while requiring only $\tilde O(k)$ samples to recover the true mean. At the core of our method lies an incremental learning phenomenon: we introduce a simple nonconvex framework that can incrementally learn the top-$k$ nonzero elements of the mean while keeping the zero elements arbitrarily small. Unlike existing estimators, our method does not need any prior knowledge of the sparsity level $k$. We prove the optimality of our estimator by providing a matching information-theoretic lower bound. Finally, we conduct a series of simulations to corroborate our theoretical findings. Our code is available at https://github.com/huihui0902/Robust_mean_estimation.
Robust Sparse Mean Estimation via Incremental Learning
While artificial intelligence (AI) holds promise for addressing societal challenges, issues of exactly which tasks to automate and to what extent to do so remain understudied. We approach this problem of task delegability from a human-centered perspective by developing a framework on human perception of task delegation to AI. We consider four high-level factors that can contribute to a delegation decision: motivation, difficulty, risk, and trust. To obtain an empirical understanding of human preferences in different tasks, we build a dataset of 100 tasks from academic papers, popular media portrayal of AI, and everyday life, and administer a survey based on our proposed framework. We find little preference for full AI control and a strong preference for machine-in-the-loop designs, in which humans play the leading role. Among the four factors, trust is the most correlated with human preferences of optimal human-machine delegation. This framework represents a first step towards characterizing human preferences of AI automation across tasks. We hope this work encourages future efforts towards understanding such individual attitudes; our goal is to inform the public and the AI research community rather than dictating any direction in technology development.
Ask Not What AI Can Do, But What AI Should Do: Towards a Framework of Task Delegability
The emergent mechanism provides a possible way to resolve the big bang singularity problem by assuming that our universe originates from the Einstein static (ES) state. Thus, the existence of a stable ES solution becomes a very crucial prerequisite for the emergent scenario. In this paper, we study the stability of an ES universe in gravity theory with a non-minimal coupling between the kinetic term of a scalar field and the Einstein tensor. We find that the ES solution is stable under both scalar and tensor perturbations when the model parameters satisfy certain conditions, which indicates that the big bang singularity can be avoided successfully by the emergent mechanism in the non-minimally kinetic coupled gravity.
Stability of Einstein static universe in gravity theory with a non-minimal derivative coupling
Collapsing Bose-Einstein condensates are rich and complex quantum systems for which quantitative explanation by simple models has proved elusive. We present new experimental data on the collapse of high density Rb-85 condensates with attractive interactions and find quantitative agreement with the predictions of the Gross-Pitaevskii equation. The collapse data and measurements of the decay of atoms from our condensates allow us to put new limits on the value of the Rb-85 three-body loss coefficient K_3 at small positive and negative scattering lengths.
Bosenova and three-body loss in a Rb-85 Bose-Einstein condensate
In this paper we derive Ward-Takahashi identities from the path integral of supersymmetric five-dimensional field theories with an $SU(1,3)$ spacetime symmetry in the presence of instantons. We explicitly show how $SU(1,3)$ is enhanced to $SU(1,3)\times U(1)$ where the additional $U(1)$ acts non-perturbatively. Solutions to such Ward-Takahashi identities were previously obtained from correlators of six-dimensional Lorentzian conformal field theories but where the instanton number was replaced by the momentum along a null direction. Here we study the reverse procedure whereby we construct correlation functions out of towers of five-dimensional operators which satisfy the Ward-Takahashi identities of a six-dimensional conformal field theory. This paves the way to computing observables in six dimensions using five-dimensional path integral techniques. We also argue that, once the instanton sector is included into the path integral, the coupling of the five-dimensional Lagrangian must be quantised, leaving no free continuous parameters.
Five-Dimensional Path Integrals for Six-Dimensional Conformal Field Theories
The robustness of Text-to-SQL parsers against adversarial perturbations plays a crucial role in delivering highly reliable applications. Previous studies along this line primarily focused on perturbations in the natural language question side, neglecting the variability of tables. Motivated by this, we propose the Adversarial Table Perturbation (ATP) as a new attacking paradigm to measure the robustness of Text-to-SQL models. Following this proposition, we curate ADVETA, the first robustness evaluation benchmark featuring natural and realistic ATPs. All tested state-of-the-art models experience dramatic performance drops on ADVETA, revealing models' vulnerability in real-world practices. To defend against ATP, we build a systematic adversarial training example generation framework tailored for better contextualization of tabular data. Experiments show that our approach not only brings the best robustness improvement against table-side perturbations but also substantially empowers models against NL-side perturbations. We release our benchmark and code at: https://github.com/microsoft/ContextualSP.
Towards Robustness of Text-to-SQL Models Against Natural and Realistic Adversarial Table Perturbation
We report on a member of the spin-disordered honeycomb lattice antiferromagnet in a quasi-one-dimensional cobaltate Ba_3Co_2O_6(CO_3)_0.7. Resistivity exhibits as semimetallic along the face-sharing CoO6 chains. Magnetic susceptibility shows strongly anisotropic Ising-spin character with the easy axis along the chain due to significant spin-orbit coupling and a trigonal crystal field. Nevertheless, ^135Ba NMR detects no indication of the long-range magnetic order down to 0.48 K. Marginally itinerant electrons possess large entropy and low-lying excitations with a Wilson ratio R_W = 116, which highlight interplays of charge, spin, and orbital in the disordered ground state.
Spin disorder in an Ising honeycomb chain cobaltate
We present the first comparison of observed stellar continuum spectra of high-redshift galaxies and mock galaxy spectra generated from hydrodynamical simulations. The mock spectra are produced from the IllustrisTNG TNG100 simulation combined with stellar population models and take into account dust attenuation and realistic observational effects (aperture effects and noise). We compare the simulated $D_n4000$ and EW(H$\delta$) of galaxies with $10.5 \leq \log(M_\ast/M_\odot) \leq 11.5$ at $0.6 \leq z \leq 1.0$ to the observed distributions from the LEGA-C survey. TNG100 globally reproduces the observed distributions of spectral indices, implying that the age distribution of galaxies in TNG100 is generally realistic. Yet there are small but significant differences. For old galaxies, TNG100 shows small $D_n4000$ when compared to LEGA-C, while LEGA-C galaxies have larger EW(H$\delta$) at fixed $D_n4000$. There are several possible explanations: 1) LEGA-C galaxies have overall older ages combined with small contributions (a few percent in mass) from younger ($<1$~Gyr) stars, while TNG100 galaxies may not have such young sub-populations; 2) the spectral mismatch could be due to systematic uncertainties in the stellar population models used to convert stellar ages and metallicities to observables. In conclusion, the latest cosmological galaxy formation simulations broadly reproduce the global age distribution of galaxies at $z\sim1$ and, at the same time, the high quality of the latest observed and simulated datasets help constrain stellar population synthesis models as well as the physical models underlying the simulations.
Towards precise galaxy evolution: a comparison between spectral indices of $z\sim1$ galaxies in the IllustrisTNG simulation and the LEGA-C survey
Bundle adjustment (BA) on LiDAR point clouds has been extensively investigated in recent years due to its ability to optimize multiple poses together, resulting in high accuracy and global consistency for point cloud. However, the accuracy and speed of LiDAR bundle adjustment depend on the quality of plane extraction, which provides point association for LiDAR BA. In this study, we propose a novel and efficient voxel-based approach for plane extraction that is specially designed to provide point association for LiDAR bundle adjustment. To begin, we partition the space into multiple voxels of a fixed size and then split these root voxels based on whether the points are on the same plane, using an octree structure. We also design a novel plane determination method based on principle component analysis (PCA), which segments the points into four even quarters and compare their minimum eigenvalues with that of the initial point cloud. Finally, we adopt a plane merging method to prevent too many small planes from being in a single voxel, which can increase the optimization time required for BA. Our experimental results on HILTI demonstrate that our approach achieves the best precision and least time cost compared to other plane extraction methods.
An Efficient Plane Extraction Approach for Bundle Adjustment on LiDAR Point clouds
We present the COmoving Lagrangian Acceleration (COLA) method: an N-body method for solving for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). Unlike standard N-body methods, the COLA method can straightforwardly trade accuracy at small-scales in order to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing, as those catalogs are essential for performing detailed error analysis for ongoing and future surveys of LSS. As an illustration, we ran a COLA-based N-body code on a box of size 100Mpc/h with particles of mass ~5*10^9Msolar/h. Running the code with only 10 timesteps was sufficient to obtain an accurate description of halo statistics down to halo masses of at least 10^11Msolar/h. This is only at a modest speed penalty when compared to mocks obtained with LPT. A standard detailed N-body run is orders of magnitude slower than our COLA-based code. The speed-up we obtain with COLA is due to the fact that we calculate the large-scale dynamics exactly using LPT, while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos. Achieving a similar level of accuracy in halo statistics without the COLA method requires at least 3 times more timesteps than when COLA is employed.
Solving Large Scale Structure in Ten Easy Steps with COLA
Pre-trained language models (PrLMs) have demonstrated superior performance due to their strong ability to learn universal language representations from self-supervised pre-training. However, even with the help of the powerful PrLMs, it is still challenging to effectively capture task-related knowledge from dialogue texts which are enriched by correlations among speaker-aware utterances. In this work, we present SPIDER, Structural Pre-traIned DialoguE Reader, to capture dialogue exclusive features. To simulate the dialogue-like features, we propose two training objectives in addition to the original LM objectives: 1) utterance order restoration, which predicts the order of the permuted utterances in dialogue context; 2) sentence backbone regularization, which regularizes the model to improve the factual correctness of summarized subject-verb-object triplets. Experimental results on widely used dialogue benchmarks verify the effectiveness of the newly introduced self-supervised tasks.
Structural Pre-training for Dialogue Comprehension
We count the connected components in the moduli space of PU(p,q)-representations of the fundamental group for a closed oriented surface. The components are labelled by pairs of integers which arise as topological invariants of the flat bundles associated to the representations. Our results show that for each allowed value of these invariants, which are bounded by a Milnor-Wood type inequality, there is a unique non-empty connected component. Interpreting the moduli space of representations as a moduli space of Higgs bundles, we take a Morse theoretic approach using a certain smooth proper function on the Higgs moduli space. A key step is the identification of the function's local minima as moduli spaces of holomorphic triples. We prove that these moduli spaces of triples are non-empty and irreducible.
Representations of the fundamental group of a surface in PU(p,q) and holomorphic triples
We analyze the current instability of the steady state with a direct current for an ungated two-dimensional(2D) electron layer for arbitrary current and the carrier scattering strength. We demonstrate the possibility of single-mode generator operating in terahertz frequency range.
Current instability and single-mode THz generation in ungated two-dimensional electron gas
We theoretically investigate a possible idea to introduce magnetic impurities to a superfluid Fermi gas. In the presence of population imbalance ($N_\uparrow>N_\downarrow$, where $N_\sigma$ is the number of Fermi atoms with pseudospin $\sigma=\uparrow,\downarrow$), we show that nonmagnetic potential scatterers embedded in the system are magnetized in the sense that some of excess $\uparrow$-spin atoms are localized around them. They destroy the superfluid order parameter around them, as in the case of magnetic impurity effect discussed in the superconductivity literature. This pair-breaking effect naturally leads to localized excited states below the superfluid excitation gap. To confirm our idea in a simply manner, we treat an attractive Fermi Hubbard model within the mean-field theory at T=0. We self-consistently determine superfluid properties around a nonmagnetic impurity, such as the superfluid order parameter, local population imbalance, as well as single-particle density of states, in the presence of population imbalance. Since the competition between superconductivity and magnetism is one of the most fundamental problems in condensed matter physics, our results would be useful for the study of this important issue in cold Fermi gases.
Formation of magnetic impurities and pair-breaking effect in a superfluid Fermi gas
A model independent theoretical analysis of recent experimental data on deuteron photodisintegration with polarized laser beams is presented. We find that it is important to distinguish between the three isovector E1 amplitudes $E1_v^j$ in reaction channels with total angular momentum $j=0,1,2$ and that the isoscalar M1 amplitude $M1_s$ is non-zero in the photon energy range $3.5 MeV < E_\gamma < 10 MeV$
Deuteron photodisintegration with polarized lasers