keremberke commited on
Commit
694c613
1 Parent(s): a204321

dataset uploaded by roboflow2huggingface package

Browse files
README.dataset.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # Hard Hats > resized640_noAugmentation-FAST
2
+ https://universe.roboflow.com/roboflow-universe-projects/hard-hats-fhbh5
3
+
4
+ Provided by a Roboflow user
5
+ License: CC BY 4.0
6
+
README.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_categories:
3
+ - object-detection
4
+ tags:
5
+ - roboflow
6
+ - roboflow2huggingface
7
+ - Construction
8
+ - Utilities
9
+ - Manufacturing
10
+ - Logistics
11
+ - Ppe
12
+ - Assembly Line
13
+ - Warehouse
14
+ - Factory
15
+ - Construction
16
+ - Logistics
17
+ - Utilities
18
+ - Damage Risk
19
+ - Ppe
20
+ ---
21
+
22
+ <div align="center">
23
+ <img width="640" alt="keremberke/hard-hat-detection" src="https://huggingface.co/datasets/keremberke/hard-hat-detection/resolve/main/thumbnail.jpg">
24
+ </div>
25
+
26
+ ### Dataset Labels
27
+
28
+ ```
29
+ ['hardhat', 'no-hardhat']
30
+ ```
31
+
32
+
33
+ ### Number of Images
34
+
35
+ ```json
36
+ {'test': 2001, 'train': 13782, 'valid': 3962}
37
+ ```
38
+
39
+
40
+ ### How to Use
41
+
42
+ - Install [datasets](https://pypi.org/project/datasets/):
43
+
44
+ ```bash
45
+ pip install datasets
46
+ ```
47
+
48
+ - Load the dataset:
49
+
50
+ ```python
51
+ from datasets import load_dataset
52
+
53
+ ds = load_dataset("keremberke/hard-hat-detection", name="full")
54
+ example = ds['train'][0]
55
+ ```
56
+
57
+ ### Roboflow Dataset Page
58
+ [https://universe.roboflow.com/roboflow-universe-projects/hard-hats-fhbh5/dataset/2](https://universe.roboflow.com/roboflow-universe-projects/hard-hats-fhbh5/dataset/2?ref=roboflow2huggingface)
59
+
60
+ ### Citation
61
+
62
+ ```
63
+ @misc{ hard-hats-fhbh5_dataset,
64
+ title = { Hard Hats Dataset },
65
+ type = { Open Source Dataset },
66
+ author = { Roboflow Universe Projects },
67
+ howpublished = { \\url{ https://universe.roboflow.com/roboflow-universe-projects/hard-hats-fhbh5 } },
68
+ url = { https://universe.roboflow.com/roboflow-universe-projects/hard-hats-fhbh5 },
69
+ journal = { Roboflow Universe },
70
+ publisher = { Roboflow },
71
+ year = { 2022 },
72
+ month = { dec },
73
+ note = { visited on 2023-01-16 },
74
+ }
75
+ ```
76
+
77
+ ### License
78
+ CC BY 4.0
79
+
80
+ ### Dataset Summary
81
+ This dataset was exported via roboflow.com on January 16, 2023 at 9:17 PM GMT
82
+
83
+ Roboflow is an end-to-end computer vision platform that helps you
84
+ * collaborate with your team on computer vision projects
85
+ * collect & organize images
86
+ * understand and search unstructured image data
87
+ * annotate, and create datasets
88
+ * export, train, and deploy computer vision models
89
+ * use active learning to improve your dataset over time
90
+
91
+ For state of the art Computer Vision training notebooks you can use with this dataset,
92
+ visit https://github.com/roboflow/notebooks
93
+
94
+ To find over 100k other datasets and pre-trained models, visit https://universe.roboflow.com
95
+
96
+ The dataset includes 19745 images.
97
+ Hardhat-ppe are annotated in COCO format.
98
+
99
+ The following pre-processing was applied to each image:
100
+ * Auto-orientation of pixel data (with EXIF-orientation stripping)
101
+ * Resize to 640x640 (Stretch)
102
+
103
+ No image augmentation techniques were applied.
104
+
105
+
106
+
README.roboflow.txt ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Hard Hats - v2 resized640_noAugmentation-FAST
3
+ ==============================
4
+
5
+ This dataset was exported via roboflow.com on January 16, 2023 at 9:17 PM GMT
6
+
7
+ Roboflow is an end-to-end computer vision platform that helps you
8
+ * collaborate with your team on computer vision projects
9
+ * collect & organize images
10
+ * understand and search unstructured image data
11
+ * annotate, and create datasets
12
+ * export, train, and deploy computer vision models
13
+ * use active learning to improve your dataset over time
14
+
15
+ For state of the art Computer Vision training notebooks you can use with this dataset,
16
+ visit https://github.com/roboflow/notebooks
17
+
18
+ To find over 100k other datasets and pre-trained models, visit https://universe.roboflow.com
19
+
20
+ The dataset includes 19745 images.
21
+ Hardhat-ppe are annotated in COCO format.
22
+
23
+ The following pre-processing was applied to each image:
24
+ * Auto-orientation of pixel data (with EXIF-orientation stripping)
25
+ * Resize to 640x640 (Stretch)
26
+
27
+ No image augmentation techniques were applied.
28
+
29
+
data/test.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e21ca22f4d69411af6e7c00b6d00ea30252867ac2d0f7cbef894b6ba9b9204c3
3
+ size 114425180
data/train.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:091b305ae044b652403ab809eae0c727551ae9bce66024f65a665cd1470126fd
3
+ size 778928861
data/valid-mini.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc44c6d3c70c51cf594f4172a1e83e20aab12cab950104298e4b95a923e3551e
3
+ size 209798
data/valid.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d39f51b1e9cd968b399d1506f014d551ff5cb572d27b076064bfb8458cb6833
3
+ size 224860587
hard-hat-detection.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import collections
2
+ import json
3
+ import os
4
+
5
+ import datasets
6
+
7
+
8
+ _HOMEPAGE = "https://universe.roboflow.com/roboflow-universe-projects/hard-hats-fhbh5/dataset/2"
9
+ _LICENSE = "CC BY 4.0"
10
+ _CITATION = """\
11
+ @misc{ hard-hats-fhbh5_dataset,
12
+ title = { Hard Hats Dataset },
13
+ type = { Open Source Dataset },
14
+ author = { Roboflow Universe Projects },
15
+ howpublished = { \\url{ https://universe.roboflow.com/roboflow-universe-projects/hard-hats-fhbh5 } },
16
+ url = { https://universe.roboflow.com/roboflow-universe-projects/hard-hats-fhbh5 },
17
+ journal = { Roboflow Universe },
18
+ publisher = { Roboflow },
19
+ year = { 2022 },
20
+ month = { dec },
21
+ note = { visited on 2023-01-16 },
22
+ }
23
+ """
24
+ _CATEGORIES = ['hardhat', 'no-hardhat']
25
+ _ANNOTATION_FILENAME = "_annotations.coco.json"
26
+
27
+
28
+ class HARDHATDETECTIONConfig(datasets.BuilderConfig):
29
+ """Builder Config for hard-hat-detection"""
30
+
31
+ def __init__(self, data_urls, **kwargs):
32
+ """
33
+ BuilderConfig for hard-hat-detection.
34
+
35
+ Args:
36
+ data_urls: `dict`, name to url to download the zip file from.
37
+ **kwargs: keyword arguments forwarded to super.
38
+ """
39
+ super(HARDHATDETECTIONConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
40
+ self.data_urls = data_urls
41
+
42
+
43
+ class HARDHATDETECTION(datasets.GeneratorBasedBuilder):
44
+ """hard-hat-detection object detection dataset"""
45
+
46
+ VERSION = datasets.Version("1.0.0")
47
+ BUILDER_CONFIGS = [
48
+ HARDHATDETECTIONConfig(
49
+ name="full",
50
+ description="Full version of hard-hat-detection dataset.",
51
+ data_urls={
52
+ "train": "https://huggingface.co/datasets/keremberke/hard-hat-detection/resolve/main/data/train.zip",
53
+ "validation": "https://huggingface.co/datasets/keremberke/hard-hat-detection/resolve/main/data/valid.zip",
54
+ "test": "https://huggingface.co/datasets/keremberke/hard-hat-detection/resolve/main/data/test.zip",
55
+ },
56
+ ),
57
+ HARDHATDETECTIONConfig(
58
+ name="mini",
59
+ description="Mini version of hard-hat-detection dataset.",
60
+ data_urls={
61
+ "train": "https://huggingface.co/datasets/keremberke/hard-hat-detection/resolve/main/data/valid-mini.zip",
62
+ "validation": "https://huggingface.co/datasets/keremberke/hard-hat-detection/resolve/main/data/valid-mini.zip",
63
+ "test": "https://huggingface.co/datasets/keremberke/hard-hat-detection/resolve/main/data/valid-mini.zip",
64
+ },
65
+ )
66
+ ]
67
+
68
+ def _info(self):
69
+ features = datasets.Features(
70
+ {
71
+ "image_id": datasets.Value("int64"),
72
+ "image": datasets.Image(),
73
+ "width": datasets.Value("int32"),
74
+ "height": datasets.Value("int32"),
75
+ "objects": datasets.Sequence(
76
+ {
77
+ "id": datasets.Value("int64"),
78
+ "area": datasets.Value("int64"),
79
+ "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
80
+ "category": datasets.ClassLabel(names=_CATEGORIES),
81
+ }
82
+ ),
83
+ }
84
+ )
85
+ return datasets.DatasetInfo(
86
+ features=features,
87
+ homepage=_HOMEPAGE,
88
+ citation=_CITATION,
89
+ license=_LICENSE,
90
+ )
91
+
92
+ def _split_generators(self, dl_manager):
93
+ data_files = dl_manager.download_and_extract(self.config.data_urls)
94
+ return [
95
+ datasets.SplitGenerator(
96
+ name=datasets.Split.TRAIN,
97
+ gen_kwargs={
98
+ "folder_dir": data_files["train"],
99
+ },
100
+ ),
101
+ datasets.SplitGenerator(
102
+ name=datasets.Split.VALIDATION,
103
+ gen_kwargs={
104
+ "folder_dir": data_files["validation"],
105
+ },
106
+ ),
107
+ datasets.SplitGenerator(
108
+ name=datasets.Split.TEST,
109
+ gen_kwargs={
110
+ "folder_dir": data_files["test"],
111
+ },
112
+ ),
113
+ ]
114
+
115
+ def _generate_examples(self, folder_dir):
116
+ def process_annot(annot, category_id_to_category):
117
+ return {
118
+ "id": annot["id"],
119
+ "area": annot["area"],
120
+ "bbox": annot["bbox"],
121
+ "category": category_id_to_category[annot["category_id"]],
122
+ }
123
+
124
+ image_id_to_image = {}
125
+ idx = 0
126
+
127
+ annotation_filepath = os.path.join(folder_dir, _ANNOTATION_FILENAME)
128
+ with open(annotation_filepath, "r") as f:
129
+ annotations = json.load(f)
130
+ category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
131
+ image_id_to_annotations = collections.defaultdict(list)
132
+ for annot in annotations["annotations"]:
133
+ image_id_to_annotations[annot["image_id"]].append(annot)
134
+ filename_to_image = {image["file_name"]: image for image in annotations["images"]}
135
+
136
+ for filename in os.listdir(folder_dir):
137
+ filepath = os.path.join(folder_dir, filename)
138
+ if filename in filename_to_image:
139
+ image = filename_to_image[filename]
140
+ objects = [
141
+ process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
142
+ ]
143
+ with open(filepath, "rb") as f:
144
+ image_bytes = f.read()
145
+ yield idx, {
146
+ "image_id": image["id"],
147
+ "image": {"path": filepath, "bytes": image_bytes},
148
+ "width": image["width"],
149
+ "height": image["height"],
150
+ "objects": objects,
151
+ }
152
+ idx += 1
split_name_to_num_samples.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"test": 2001, "train": 13782, "valid": 3962}
thumbnail.jpg ADDED

Git LFS Details

  • SHA256: f4b0fb5fe33a0e23b25b202b1e92eea6674d1331d67505710dbc08644e92b9f4
  • Pointer size: 131 Bytes
  • Size of remote file: 107 kB