Datasets:
Tasks:
Object Detection
Sub-tasks:
face-detection
Languages:
English
Size:
1K - 10K
Tags:
license-plate-detection
License:
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PP4AV dataset.""" | |
import os | |
from glob import glob | |
from tqdm import tqdm | |
from pathlib import Path | |
from typing import List | |
import re | |
from collections import defaultdict | |
import datasets | |
_HOMEPAGE = "https://github.com/khaclinh/pp4av" | |
_LICENSE = "Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)" | |
_CITATION = """\ | |
@article{PP4AV2022, | |
title = {PP4AV: A benchmarking Dataset for Privacy-preserving Autonomous Driving}, | |
author = {Linh Trinh, Phuong Pham, Hoang Trinh, Nguyen Bach, Dung Nguyen, Giang Nguyen, Huy Nguyen}, | |
booktitle = {IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)}, | |
year = {2023} | |
} | |
""" | |
_DESCRIPTION = """\ | |
PP4AV is the first public dataset with faces and license plates annotated with driving scenarios. | |
P4AV provides 3,447 annotated driving images for both faces and license plates. | |
For normal camera data, dataset sampled images from the existing videos in which cameras were mounted in moving vehicles, running around the European cities. | |
The images in PP4AV were sampled from 6 European cities at various times of day, including nighttime. | |
This dataset use the fisheye images from the WoodScape dataset to select 244 images from the front, rear, left, and right cameras for fisheye camera data. | |
PP4AV dataset can be used as a benchmark suite (evaluating dataset) for data anonymization models in autonomous driving. | |
""" | |
_REPO = "https://huggingface.co/datasets/khaclinh/pp4av/resolve/main/data" | |
_URLS = { | |
"test": f"{_REPO}/images.zip", | |
"annot": f"{_REPO}/soiling_annotations.zip", | |
} | |
IMG_EXT = ['png', 'jpeg', 'jpg'] | |
_SUBREDDITS = ["zurich", "strasbourg", "stuttgart", "switzerland", "netherlands_day", "netherlands_night", "paris"] | |
class PP4AVConfig(datasets.BuilderConfig): | |
"""BuilderConfig for PP4AV.""" | |
def __init__(self, name, **kwargs): | |
"""BuilderConfig for PP4AV. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(PP4AVConfig, self).__init__(version=datasets.Version("1.0.0", ""), name=name, **kwargs) | |
class PP4AV(datasets.GeneratorBasedBuilder): | |
"""PP4AV dataset.""" | |
BUILDER_CONFIGS = [ | |
PP4AVConfig("fisheye"), | |
] | |
BUILDER_CONFIGS += [PP4AVConfig(subreddit) for subreddit in _SUBREDDITS] | |
DEFAULT_CONFIG_NAME = "fisheye" | |
VERSION = datasets.Version("1.0.0") | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"image": datasets.Image(), | |
"faces": datasets.Sequence(datasets.Sequence(datasets.Value("float32"), length=4)), | |
"plates": datasets.Sequence(datasets.Sequence(datasets.Value("float32"), length=4)), | |
} | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
data_dir = dl_manager.download_and_extract(_URLS) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"name": self.config.name, | |
"data_dir": data_dir["test"], | |
"annot_dir": data_dir["annot"], | |
}, | |
), | |
] | |
def _generate_examples(self, name, data_dir, annot_dir): | |
image_dir = os.path.join(data_dir, name) | |
annotation_dir = os.path.join(annot_dir, name) | |
files = [] | |
idx = 0 | |
for i_file in glob(os.path.join(image_dir, "*.png")): | |
plates = [] | |
faces = [] | |
img_relative_file = os.path.relpath(i_file, image_dir) | |
gt_relative_path = img_relative_file.replace(".png", ".txt") | |
gt_path = os.path.join(annotation_dir, gt_relative_path) | |
annotation = defaultdict(list) | |
with open(gt_path, "r", encoding="utf-8") as f: | |
line = f.readline().strip() | |
while line: | |
assert re.match(r"^\d( [\d\.]+){4,5}$", line), "Incorrect line: %s" % line | |
cls, cx, cy, w, h = line.split()[:5] | |
cls, cx, cy, w, h = int(cls), float(cx), float(cy), float(w), float(h) | |
x1, y1, x2, y2 = cx - w / 2, cy - h / 2, cx + w / 2, cy + h / 2 | |
annotation[cls].append([x1, y1, x2, y2]) | |
line = f.readline().strip() | |
for cls, bboxes in annotation.items(): | |
for x1, y1, x2, y2 in bboxes: | |
if cls == 0: | |
faces.append([x1, y1, x2, y2]) | |
else: | |
plates.append([x1, y1, x2, y2]) | |
yield idx, {"image": i_file, "faces": faces, "plates": plates} | |
idx += 1 | |