Datasets:

ArXiv:
License:
File size: 42,502 Bytes
5f0ca78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
{"name":"WienerIkeharaInterval_discrete'","declaration":"theorem WienerIkeharaInterval_discrete' {A : ℝ} {a : ℝ} {b : ℝ} {G : ℂ → ℂ} {f : ℕ → ℝ} (hpos : 0 ≤ f) (hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm (fun n => ↑(f n)) σ')) (hcheby : cheby fun n => ↑(f n)) (hG : ContinuousOn G {s | 1 ≤ s.re}) (hG' : Set.EqOn G (fun s => LSeries (fun n => ↑(f n)) s - ↑A / (s - 1)) {s | 1 < s.re}) (ha : 0 < a) (hb : a ≤ b) : Filter.Tendsto (fun N => (Finset.sum (Finset.Ico ⌈a * ↑N⌉₊ ⌈b * ↑N⌉₊) fun n => f n) / ↑N) Filter.atTop\n  (nhds (A * (b - a)))"}
{"name":"hh_antitone","declaration":"theorem hh_antitone {a : ℝ} (ha : a ∈ Set.Ioo (-1) 1) : AntitoneOn (hh a) (Set.Ioi 0)"}
{"name":"wiener_ikehara_smooth'","declaration":"theorem wiener_ikehara_smooth' {A : ℝ} {Ψ : ℝ → ℂ} {G : ℂ → ℂ} {f : ℕ → ℂ} (hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm f σ')) (hcheby : cheby f) (hG : ContinuousOn G {s | 1 ≤ s.re}) (hG' : Set.EqOn G (fun s => LSeries f s - ↑A / (s - 1)) {s | 1 < s.re}) (hsmooth : ContDiff ℝ ⊤ Ψ) (hsupp : HasCompactSupport Ψ) (hplus : closure (Function.support Ψ) ⊆ Set.Ioi 0) : Filter.Tendsto (fun x => (∑' (n : ℕ), f n * Ψ (↑n / x)) / ↑x) Filter.atTop (nhds (↑A * ∫ (y : ℝ) in Set.Ioi 0, Ψ y))"}
{"name":"log_isbigo_log_div","declaration":"theorem log_isbigo_log_div {d : ℝ} (hb : 0 < d) : (fun n => Real.log n) =O[Filter.atTop] fun n => Real.log (n / d)"}
{"name":"wiener_ikehara_smooth_real","declaration":"theorem wiener_ikehara_smooth_real {A : ℝ} {G : ℂ → ℂ} {f : ℕ → ℝ} {Ψ : ℝ → ℝ} (hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm (fun n => ↑(f n)) σ')) (hcheby : cheby fun n => ↑(f n)) (hG : ContinuousOn G {s | 1 ≤ s.re}) (hG' : Set.EqOn G (fun s => LSeries (fun n => ↑(f n)) s - ↑A / (s - 1)) {s | 1 < s.re}) (hsmooth : ContDiff ℝ ⊤ Ψ) (hsupp : HasCompactSupport Ψ) (hplus : closure (Function.support Ψ) ⊆ Set.Ioi 0) : Filter.Tendsto (fun x => (∑' (n : ℕ), f n * Ψ (↑n / x)) / x) Filter.atTop (nhds (A * ∫ (y : ℝ) in Set.Ioi 0, Ψ y))"}
{"name":"pp'","declaration":"def pp' (a : ℝ) (x : ℝ) : ℝ"}
{"name":"one_div_sub_one","declaration":"theorem one_div_sub_one (n : ℕ) : 1 / ↑(n - 1) ≤ 2 / ↑n"}
{"name":"summation_by_parts'","declaration":"theorem summation_by_parts' {E : Type u_1} [Ring E] {a : ℕ → E} {b : ℕ → E} {n : ℕ} : cumsum (a * b) (n + 1) = cumsum a (n + 1) * b n - cumsum (shift (cumsum a) * nabla b) n"}
{"name":"cheby","declaration":"def cheby (f : ℕ → ℂ) : Prop"}
{"name":"continuous_LSeries_aux","declaration":"theorem continuous_LSeries_aux {σ' : ℝ} {f : ℕ → ℂ} (hf : Summable (nterm f σ')) : Continuous fun x => LSeries f (↑σ' + ↑x * Complex.I)"}
{"name":"limiting_cor_schwartz","declaration":"theorem limiting_cor_schwartz {A : ℝ} {G : ℂ → ℂ} {f : ℕ → ℂ} (ψ : SchwartzMap ℝ ℂ) (hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm f σ')) (hcheby : cheby f) (hG : ContinuousOn G {s | 1 ≤ s.re}) (hG' : Set.EqOn G (fun s => LSeries f s - ↑A / (s - 1)) {s | 1 < s.re}) : Filter.Tendsto\n  (fun x =>\n    ∑' (n : ℕ), f n / ↑n * Real.fourierIntegral (⇑ψ) (1 / (2 * Real.pi) * Real.log (↑n / x)) -\n      ↑A * ∫ (u : ℝ) in Set.Ici (-Real.log x), Real.fourierIntegral (⇑ψ) (u / (2 * Real.pi)))\n  Filter.atTop (nhds 0)"}
{"name":"comp_exp_support2","declaration":"theorem comp_exp_support2 {Ψ : ℝ → ℂ} (hsupp : HasCompactSupport Ψ) : ∀ᶠ (x : ℝ) in Filter.atTop, (Ψ ∘ Real.exp) x = 0"}
{"name":"hf_coe1","declaration":"theorem hf_coe1 {σ' : ℝ} {f : ℕ → ℂ} (hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm f σ')) (hσ : 1 < σ') : ∑' (i : ℕ), ↑‖LSeries.term f (↑σ') i‖₊ ≠ ⊤"}
{"name":"gg_of_hh","declaration":"theorem gg_of_hh {x : ℝ} (hx : x ≠ 0) (i : ℝ) : gg x i = x⁻¹ * hh (1 / (2 * Real.pi)) (i / x)"}
{"name":"mem_Icc_iff_div","declaration":"theorem mem_Icc_iff_div {n : ℕ} {a : ℝ} {b : ℝ} {x : ℝ} (hb : 0 ≤ b) (hx : 0 < x) : n ∈ Finset.Icc ⌈a * x⌉₊ ⌊b * x⌋₊ ↔ ↑n / x ∈ Set.Icc a b"}
{"name":"decay_bounds","declaration":"theorem decay_bounds {A : ℝ} {u : ℝ} (ψ : CS 2 ℂ) (hA : ∀ (t : ℝ), ‖ψ.toFun t‖ ≤ A / (1 + t ^ 2)) (hA' : ∀ (t : ℝ), ‖deriv^[2] ψ.toFun t‖ ≤ A / (1 + t ^ 2)) : ‖Real.fourierIntegral ψ.toFun u‖ ≤ (Real.pi + 1 / (4 * Real.pi)) * A / (1 + u ^ 2)"}
{"name":"nnabla_bound_aux","declaration":"theorem nnabla_bound_aux {x : ℝ} (hx : 0 < x) : (nnabla fun n => 1 / (n * ((2 * Real.pi) ^ 2 + Real.log (n / x) ^ 2))) =O[Filter.atTop] fun n =>\n  1 / (Real.log n ^ 2 * n ^ 2)"}
{"name":"Asymptotics.IsBigO.sq","declaration":"theorem Asymptotics.IsBigO.sq {α : Type u_1} [Preorder α] {f : α → ℝ} {g : α → ℝ} (h : f =O[Filter.atTop] g) : (fun n => f n ^ 2) =O[Filter.atTop] fun n => g n ^ 2"}
{"name":"second_fourier_integrable_aux2","declaration":"theorem second_fourier_integrable_aux2 {x : ℝ} {t : ℝ} {σ' : ℝ} (hσ : 1 < σ') : MeasureTheory.IntegrableOn (fun u => Complex.exp ((1 - ↑σ' - ↑t * Complex.I) * ↑u)) (Set.Ioi (-Real.log x))\n  MeasureTheory.volume"}
{"name":"cancel_main'","declaration":"theorem cancel_main' {C : ℝ} {f : ℕ → ℝ} {g : ℕ → ℝ} (hf : 0 ≤ f) (hf0 : f 0 = 0) (hg : 0 ≤ g) (hf' : ∀ (n : ℕ), cumsum f n ≤ C * ↑n) (hg' : Antitone g) (n : ℕ) : cumsum (f * g) n ≤ C * cumsum g n"}
{"name":"hh_integral","declaration":"theorem hh_integral {a : ℝ} {b : ℝ} {c : ℝ} (ha : 0 < a) (hb : 0 < b) (hc : 0 < c) : ∫ (t : ℝ) in Set.Ioi 0, a * hh b (t / c) = a * c / b * Real.pi"}
{"name":"second_fourier_integrable_aux1a","declaration":"theorem second_fourier_integrable_aux1a {x : ℝ} {σ' : ℝ} (hσ : 1 < σ') : MeasureTheory.IntegrableOn (fun x => Complex.exp (-(↑x * (↑σ' - 1)))) (Set.Ici (-Real.log x)) MeasureTheory.volume"}
{"name":"pp_deriv_eq","declaration":"theorem pp_deriv_eq (a : ℝ) : deriv (pp a) = pp' a"}
{"name":"summable_iff_bounded'","declaration":"theorem summable_iff_bounded' {u : ℕ → ℝ} (hu : ∀ᶠ (n : ℕ) in Filter.atTop, 0 ≤ u n) : Summable u ↔ Filter.BoundedAtFilter Filter.atTop (cumsum u)"}
{"name":"comp_exp_support1","declaration":"theorem comp_exp_support1 {Ψ : ℝ → ℂ} (hplus : closure (Function.support Ψ) ⊆ Set.Ioi 0) : ∀ᶠ (x : ℝ) in Filter.atBot, Ψ (Real.exp x) = 0"}
{"name":"limiting_cor_W21","declaration":"theorem limiting_cor_W21 {A : ℝ} {G : ℂ → ℂ} {f : ℕ → ℂ} (ψ : W21) (hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm f σ')) (hcheby : cheby f) (hG : ContinuousOn G {s | 1 ≤ s.re}) (hG' : Set.EqOn G (fun s => LSeries f s - ↑A / (s - 1)) {s | 1 < s.re}) : Filter.Tendsto\n  (fun x =>\n    ∑' (n : ℕ), f n / ↑n * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (↑n / x)) -\n      ↑A * ∫ (u : ℝ) in Set.Ici (-Real.log x), Real.fourierIntegral ψ.toFun (u / (2 * Real.pi)))\n  Filter.atTop (nhds 0)"}
{"name":"WI_sum_Iab_le'","declaration":"theorem WI_sum_Iab_le' {a : ℝ} {b : ℝ} {f : ℕ → ℝ} (hpos : 0 ≤ f) {C : ℝ} (hcheby : chebyWith C fun n => ↑(f n)) (hb : 0 < b) : ∀ᶠ (x : ℝ) in Filter.atTop, (∑' (n : ℕ), f n * Set.indicator (Set.Ico a b) 1 (↑n / x)) / x ≤ C * 2 * b"}
{"name":"summation_by_parts","declaration":"theorem summation_by_parts {E : Type u_1} [Ring E] {a : ℕ → E} {A : ℕ → E} {b : ℕ → E} (ha : a = nabla A) {n : ℕ} : cumsum (a * b) (n + 1) = A (n + 1) * b n - A 0 * b 0 - cumsum (shift A * fun i => b (i + 1) - b i) n"}
{"name":"auto_cheby","declaration":"theorem auto_cheby {A : ℝ} {G : ℂ → ℂ} {f : ℕ → ℝ} (hpos : 0 ≤ f) (hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm (fun n => ↑(f n)) σ')) (hG : ContinuousOn G {s | 1 ≤ s.re}) (hG' : Set.EqOn G (fun s => LSeries (fun n => ↑(f n)) s - ↑A / (s - 1)) {s | 1 < s.re}) : cheby fun n => ↑(f n)"}
{"name":"ge_of_eventually_nhdsWithin","declaration":"theorem ge_of_eventually_nhdsWithin {a : ℝ} {b : ℝ} (h : ∀ᶠ (c : ℝ) in nhdsWithin b (Set.Iio b), c ≤ a) : b ≤ a"}
{"name":"nterm_eq_norm_term","declaration":"theorem nterm_eq_norm_term {n : ℕ} {σ' : ℝ} {f : ℕ → ℂ} : nterm f σ' n = ‖LSeries.term f (↑σ') n‖"}
{"name":"decay_bounds_cor_aux","declaration":"theorem decay_bounds_cor_aux (ψ : CS 2 ℂ) : ∃ C, ∀ (u : ℝ), ‖ψ.toFun u‖ ≤ C / (1 + u ^ 2)"}
{"name":"second_fourier","declaration":"theorem second_fourier {ψ : ℝ → ℂ} (hcont : Continuous ψ) (hsupp : MeasureTheory.Integrable ψ MeasureTheory.volume) {x : ℝ} {σ' : ℝ} (hx : 0 < x) (hσ : 1 < σ') : ∫ (u : ℝ) in Set.Ici (-Real.log x), ↑(Real.exp (-u * (σ' - 1))) * Real.fourierIntegral ψ (u / (2 * Real.pi)) =\n  ↑(x ^ (σ' - 1)) * ∫ (t : ℝ), 1 / (↑σ' + ↑t * Complex.I - 1) * ψ t * ↑x ^ (↑t * Complex.I)"}
{"name":"limiting_fourier_lim2","declaration":"theorem limiting_fourier_lim2 {x : ℝ} (A : ℝ) (ψ : W21) (hx : 1 ≤ x) : Filter.Tendsto\n  (fun σ' =>\n    ↑A * ↑(x ^ (1 - σ')) *\n      ∫ (u : ℝ) in Set.Ici (-Real.log x),\n        ↑(Real.exp (-u * (σ' - 1))) * Real.fourierIntegral ψ.toFun (u / (2 * Real.pi)))\n  (nhdsWithin 1 (Set.Ioi 1))\n  (nhds (↑A * ∫ (u : ℝ) in Set.Ici (-Real.log x), Real.fourierIntegral ψ.toFun (u / (2 * Real.pi))))"}
{"name":"pp_pos","declaration":"theorem pp_pos {a : ℝ} (ha : a ∈ Set.Ioo (-1) 1) (x : ℝ) : 0 < pp a x"}
{"name":"first_fourier_aux2","declaration":"theorem first_fourier_aux2 {x : ℝ} {y : ℝ} {σ' : ℝ} {ψ : ℝ → ℂ} {f : ℕ → ℂ} (hx : 0 < x) (n : ℕ) : LSeries.term f (↑σ') n * Real.fourierChar (-(y * (1 / (2 * Real.pi) * Real.log (↑n / x)))) • ψ y =\n  LSeries.term f (↑σ' + ↑y * Complex.I) n • (ψ y * ↑x ^ (↑y * Complex.I))"}
{"name":"limiting_cor","declaration":"theorem limiting_cor {A : ℝ} {G : ℂ → ℂ} {f : ℕ → ℂ} (ψ : CS 2 ℂ) (hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm f σ')) (hcheby : cheby f) (hG : ContinuousOn G {s | 1 ≤ s.re}) (hG' : Set.EqOn G (fun s => LSeries f s - ↑A / (s - 1)) {s | 1 < s.re}) : Filter.Tendsto\n  (fun x =>\n    ∑' (n : ℕ), f n / ↑n * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (↑n / x)) -\n      ↑A * ∫ (u : ℝ) in Set.Ici (-Real.log x), Real.fourierIntegral ψ.toFun (u / (2 * Real.pi)))\n  Filter.atTop (nhds 0)"}
{"name":"bound_I2","declaration":"theorem bound_I2 (x : ℝ) (ψ : W21) : ‖∫ (u : ℝ) in Set.Ici (-Real.log x), Real.fourierIntegral ψ.toFun (u / (2 * Real.pi))‖ ≤\n  W21.norm ψ.toFun * (2 * Real.pi ^ 2)"}
{"name":"summable_fourier","declaration":"theorem summable_fourier {f : ℕ → ℂ} (x : ℝ) (hx : 0 < x) (ψ : W21) (hcheby : cheby f) : Summable fun i => ‖f i / ↑i * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (↑i / x))‖"}
{"name":"decay_bounds_aux","declaration":"theorem decay_bounds_aux {A : ℝ} {f : ℝ → ℂ} (hf : MeasureTheory.AEStronglyMeasurable f MeasureTheory.volume) (h : ∀ (t : ℝ), ‖f t‖ ≤ A * (1 + t ^ 2)⁻¹) : ∫ (t : ℝ), ‖f t‖ ≤ Real.pi * A"}
{"name":"hh_le","declaration":"theorem hh_le (a : ℝ) (t : ℝ) (ht : 0 ≤ t) : |hh a t| ≤ t⁻¹"}
{"name":"WienerIkeharaTheorem''","declaration":"theorem WienerIkeharaTheorem'' {A : ℝ} {F : ℂ → ℂ} {f : ℕ → ℝ} (hpos : 0 ≤ f) (hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm (fun n => ↑(f n)) σ')) (hG : ContinuousOn F {s | 1 ≤ s.re}) (hG' : Set.EqOn F (fun s => LSeries (fun n => ↑(f n)) s - ↑A / (s - 1)) {s | 1 < s.re}) : Filter.Tendsto (fun N => cumsum f N / ↑N) Filter.atTop (nhds A)"}
{"name":"smooth_urysohn_support_Ioo","declaration":"theorem smooth_urysohn_support_Ioo {a : ℝ} {b : ℝ} {c : ℝ} {d : ℝ} (h1 : a < b) (h3 : c < d) : ∃ Ψ,\n  ContDiff ℝ ⊤ Ψ ∧\n    HasCompactSupport Ψ ∧\n      Set.indicator (Set.Icc b c) 1 ≤ Ψ ∧ Ψ ≤ Set.indicator (Set.Ioo a d) 1 ∧ Function.support Ψ = Set.Ioo a d"}
{"name":"summable_inv_mul_log_sq","declaration":"theorem summable_inv_mul_log_sq  : Summable fun n => (↑n * Real.log ↑n ^ 2)⁻¹"}
{"name":"hh_integrable","declaration":"theorem hh_integrable {a : ℝ} {b : ℝ} {c : ℝ} (ha : 0 < a) (hb : 0 < b) (hc : 0 < c) : MeasureTheory.IntegrableOn (fun t => a * hh b (t / c)) (Set.Ici 0) MeasureTheory.volume"}
{"name":"dirichlet_test'","declaration":"theorem dirichlet_test' {a : ℕ → ℝ} {b : ℕ → ℝ} (ha : 0 ≤ a) (hb : 0 ≤ b) (hAb : Filter.BoundedAtFilter Filter.atTop (shift (cumsum a) * b)) (hbb : ∀ᶠ (n : ℕ) in Filter.atTop, b (n + 1) ≤ b n) (h : Summable (shift (cumsum a) * nnabla b)) : Summable (a * b)"}
{"name":"Finset.sum_shift_back","declaration":"theorem Finset.sum_shift_back {E : Type u_1} [Ring E] {u : ℕ → E} {n : ℕ} : cumsum u (n + 1) = cumsum u n + u n"}
{"name":"log_mul_add_isBigO_log","declaration":"theorem log_mul_add_isBigO_log {a : ℝ} (ha : 0 < a) (b : ℝ) : (fun x => Real.log (a * x + b)) =O[Filter.atTop] Real.log"}
{"name":"toSchwartz_apply","declaration":"theorem toSchwartz_apply (f : ℝ → ℂ) {h1 : ContDiff ℝ ⊤ f} {h2 : ∀ (k n : ℕ), ∃ C, ∀ (x : ℝ), ‖x‖ ^ k * ‖iteratedFDeriv ℝ n f x‖ ≤ C} {x : ℝ} : { toFun := f, smooth' := h1, decay' := h2 } x = f x"}
{"name":"nnabla","declaration":"def nnabla {α : Type u_1} {E : Type u_2} [OfNat α 1] [Add α] [Sub E] (u : α → E) (n : α) : E"}
{"name":"Finset.sum_shift_back'","declaration":"theorem Finset.sum_shift_back' {E : Type u_1} [Ring E] {u : ℕ → E} : shift (cumsum u) = cumsum u + u"}
{"name":"exists_antitone_of_eventually","declaration":"theorem exists_antitone_of_eventually {u : ℕ → ℝ} (hu : ∀ᶠ (n : ℕ) in Filter.atTop, u (n + 1) ≤ u n) : ∃ v, Set.range v ⊆ Set.range u ∧ Antitone v ∧ v =ᶠ[Filter.atTop] u"}
{"name":"nnabla_bound_aux2","declaration":"theorem nnabla_bound_aux2 (a : ℝ) {b : ℝ} (hb : 0 < b) : ∀ᶠ (x : ℝ) in Filter.atTop, 0 < x * (a + Real.log (x / b) ^ 2)"}
{"name":"cheby.bigO","declaration":"theorem cheby.bigO {f : ℕ → ℂ} (h : cheby f) : (cumsum fun x => ‖f x‖) =O[Filter.atTop] Nat.cast"}
{"name":"WI_tendsto_aux'","declaration":"theorem WI_tendsto_aux' (a : ℝ) (b : ℝ) {A : ℝ} (hA : 0 < A) : Filter.Tendsto (fun c => b - a - c / A) (nhdsWithin (A * (b - a)) (Set.Iio (A * (b - a)))) (nhdsWithin 0 (Set.Ioi 0))"}
{"name":"one_div_two_pi_mem_Ioo","declaration":"theorem one_div_two_pi_mem_Ioo  : 1 / (2 * Real.pi) ∈ Set.Ioo (-1) 1"}
{"name":"isLittleO_const_of_tendsto_atTop","declaration":"theorem isLittleO_const_of_tendsto_atTop {α : Type u_1} [Preorder α] (a : ℝ) {f : α → ℝ} (hf : Filter.Tendsto f Filter.atTop Filter.atTop) : (fun x => a) =o[Filter.atTop] f"}
{"name":"WienerIkeharaTheorem'","declaration":"theorem WienerIkeharaTheorem' {A : ℝ} {G : ℂ → ℂ} {f : ℕ → ℝ} (hpos : 0 ≤ f) (hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm (fun n => ↑(f n)) σ')) (hcheby : cheby fun n => ↑(f n)) (hG : ContinuousOn G {s | 1 ≤ s.re}) (hG' : Set.EqOn G (fun s => LSeries (fun n => ↑(f n)) s - ↑A / (s - 1)) {s | 1 < s.re}) : Filter.Tendsto (fun N => cumsum f N / ↑N) Filter.atTop (nhds A)"}
{"name":"summation_by_parts''","declaration":"theorem summation_by_parts'' {E : Type u_1} [Ring E] {a : ℕ → E} {b : ℕ → E} : shift (cumsum (a * b)) = shift (cumsum a) * b - cumsum (shift (cumsum a) * nabla b)"}
{"name":"second_fourier_aux","declaration":"theorem second_fourier_aux {x : ℝ} {t : ℝ} {σ' : ℝ} (hx : 0 < x) : -(Complex.exp (-((1 - ↑σ' - ↑t * Complex.I) * ↑(Real.log x))) / (1 - ↑σ' - ↑t * Complex.I)) =\n  ↑(x ^ (σ' - 1)) * (↑σ' + ↑t * Complex.I - 1)⁻¹ * ↑x ^ (↑t * Complex.I)"}
{"name":"tendsto_S_S_zero","declaration":"theorem tendsto_S_S_zero {f : ℕ → ℝ} (hpos : 0 ≤ f) (hcheby : cheby fun n => ↑(f n)) : TendstoUniformlyOnFilter (S f) (S f 0) (nhdsWithin 0 (Set.Ioi 0)) Filter.atTop"}
{"name":"bound_I1","declaration":"theorem bound_I1 {f : ℕ → ℂ} (x : ℝ) (hx : 0 < x) (ψ : W21) (hcheby : cheby f) : ‖∑' (n : ℕ), f n / ↑n * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (↑n / x))‖ ≤\n  W21.norm ψ.toFun • ∑' (i : ℕ), ‖f i‖ / ↑i * (1 + (1 / (2 * Real.pi) * Real.log (↑i / x)) ^ 2)⁻¹"}
{"name":"instCoeForAllRealForAllComplex_1","declaration":"def instCoeForAllRealForAllComplex_1 {E : Type u_1} : Coe (E → ℝ) (E → ℂ)"}
{"name":"tendsto_mul_add_atTop","declaration":"theorem tendsto_mul_add_atTop {a : ℝ} (ha : 0 < a) (b : ℝ) : Filter.Tendsto (fun x => a * x + b) Filter.atTop Filter.atTop"}
{"name":"bound_main","declaration":"theorem bound_main {f : ℕ → ℂ} {C : ℝ} (A : ℂ) (x : ℝ) (hx : 1 ≤ x) (ψ : W21) (hcheby : chebyWith C f) : ‖∑' (n : ℕ), f n / ↑n * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (↑n / x)) -\n      A * ∫ (u : ℝ) in Set.Ici (-Real.log x), Real.fourierIntegral ψ.toFun (u / (2 * Real.pi))‖ ≤\n  W21.norm ψ.toFun * (C * (1 + 2 * Real.pi ^ 2) + ‖A‖ * (2 * Real.pi ^ 2))"}
{"name":"S","declaration":"def S {𝕜 : Type} [RCLike 𝕜] (f : ℕ → 𝕜) (ε : ℝ) (N : ℕ) : 𝕜"}
{"name":"second_fourier_integrable_aux1","declaration":"theorem second_fourier_integrable_aux1 {x : ℝ} {σ' : ℝ} {ψ : ℝ → ℂ} (hcont : Continuous ψ) (hsupp : MeasureTheory.Integrable ψ MeasureTheory.volume) (hσ : 1 < σ') : let ν := MeasureTheory.Measure.prod (MeasureTheory.volume.restrict (Set.Ici (-Real.log x))) MeasureTheory.volume;\nMeasureTheory.Integrable\n  (Function.uncurry fun u a =>\n    ↑(Real.exp (-u * (σ' - 1))) • ↑(Real.fourierChar (Multiplicative.ofAdd (-(a * (u / (2 * Real.pi)))))) • ψ a)\n  ν"}
{"name":"pp","declaration":"def pp (a : ℝ) (x : ℝ) : ℝ"}
{"name":"pp_deriv","declaration":"theorem pp_deriv (a : ℝ) (x : ℝ) : HasDerivAt (pp a) (pp' a x) x"}
{"name":"nabla","declaration":"def nabla {α : Type u_1} {E : Type u_2} [OfNat α 1] [Add α] [Sub E] (u : α → E) (n : α) : E"}
{"name":"cumsum_succ","declaration":"theorem cumsum_succ {E : Type u_2} [AddCommMonoid E] {u : ℕ → E} (n : ℕ) : cumsum u (n + 1) = cumsum u n + u n"}
{"name":"log_add_one_sub_log_le","declaration":"theorem log_add_one_sub_log_le {x : ℝ} (hx : 0 < x) : nabla Real.log x ≤ x⁻¹"}
{"name":"residue_nonneg","declaration":"theorem residue_nonneg {A : ℝ} {G : ℂ → ℂ} {f : ℕ → ℝ} (hpos : 0 ≤ f) (hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm (fun n => ↑(f n)) σ')) (hcheby : cheby fun n => ↑(f n)) (hG : ContinuousOn G {s | 1 ≤ s.re}) (hG' : Set.EqOn G (fun s => LSeries (fun n => ↑(f n)) s - ↑A / (s - 1)) {s | 1 < s.re}) : 0 ≤ A"}
{"name":"hh","declaration":"def hh (a : ℝ) (t : ℝ) : ℝ"}
{"name":"limiting_fourier_lim2_aux","declaration":"theorem limiting_fourier_lim2_aux (x : ℝ) (C : ℝ) : MeasureTheory.Integrable (fun t => |x| * (C / (1 + (t / (2 * Real.pi)) ^ 2)))\n  (MeasureTheory.volume.restrict (Set.Ici (-Real.log x)))"}
{"name":"Finset.sum_shift_front'","declaration":"theorem Finset.sum_shift_front' {E : Type u_1} [Ring E] {u : ℕ → E} : shift (cumsum u) = (fun x => u 0) + cumsum (shift u)"}
{"name":"first_fourier_aux2a","declaration":"theorem first_fourier_aux2a {n : ℕ} {x : ℝ} {y : ℝ} : 2 * ↑Real.pi * -(↑y * (1 / (2 * ↑Real.pi) * ↑(Real.log (↑n / x)))) = -(↑y * ↑(Real.log (↑n / x)))"}
{"name":"mem_Ico_iff_div","declaration":"theorem mem_Ico_iff_div {n : ℕ} {a : ℝ} {b : ℝ} {x : ℝ} (hx : 0 < x) : n ∈ Finset.Ico ⌈a * x⌉₊ ⌈b * x⌉₊ ↔ ↑n / x ∈ Set.Ico a b"}
{"name":"Filter.EventuallyEq.summable","declaration":"theorem Filter.EventuallyEq.summable {u : ℕ → ℝ} {v : ℕ → ℝ} (h : u =ᶠ[Filter.atTop] v) (hu : Summable v) : Summable u"}
{"name":"cumsum_nonneg","declaration":"theorem cumsum_nonneg {u : ℕ → ℝ} (hu : 0 ≤ u) : 0 ≤ cumsum u"}
{"name":"nnabla_mul","declaration":"theorem nnabla_mul {α : Type u_1} {E : Type u_2} [OfNat α 1] [Add α] [Ring E] {u : α → E} {c : E} : (nnabla fun n => c * u n) = c • nnabla u"}
{"name":"vonMangoldt_cheby","declaration":"theorem vonMangoldt_cheby  : cheby fun n => ↑(ArithmeticFunction.vonMangoldt n)"}
{"name":"cancel_aux'","declaration":"theorem cancel_aux' {C : ℝ} {f : ℕ → ℝ} {g : ℕ → ℝ} (hf : 0 ≤ f) (hg : 0 ≤ g) (hf' : ∀ (n : ℕ), cumsum f n ≤ C * ↑n) (hg' : Antitone g) (n : ℕ) : (Finset.sum (Finset.range n) fun i => f i * g i) ≤\n  C * ↑n * g (n - 1) + C * cumsum g (n - 1 - 1 + 1) - C * (↑(n - 1 - 1) + 1) * g (n - 1)"}
{"name":"decay_bounds_key","declaration":"theorem decay_bounds_key (f : W21) (u : ℝ) : ‖Real.fourierIntegral f.toFun u‖ ≤ ‖f‖ * (1 + u ^ 2)⁻¹"}
{"name":"continuous_FourierIntegral","declaration":"theorem continuous_FourierIntegral (ψ : W21) : Continuous (Real.fourierIntegral ψ.toFun)"}
{"name":"BoundedAtFilter.comp_add","declaration":"theorem BoundedAtFilter.comp_add {u : ℕ → ℝ} {N : ℕ} : (Filter.BoundedAtFilter Filter.atTop fun n => u (n + N)) ↔ Filter.BoundedAtFilter Filter.atTop u"}
{"name":"le_of_eventually_nhdsWithin","declaration":"theorem le_of_eventually_nhdsWithin {a : ℝ} {b : ℝ} (h : ∀ᶠ (c : ℝ) in nhdsWithin b (Set.Ioi b), a ≤ c) : a ≤ b"}
{"name":"nabla_cumsum","declaration":"theorem nabla_cumsum {E : Type u_2} [AddCommGroup E] {u : ℕ → E} : nabla (cumsum u) = u"}
{"name":"first_fourier","declaration":"theorem first_fourier {x : ℝ} {σ' : ℝ} {ψ : ℝ → ℂ} {f : ℕ → ℂ} (hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm f σ')) (hcont : Continuous ψ) (hsupp : MeasureTheory.Integrable ψ MeasureTheory.volume) (hx : 0 < x) (hσ : 1 < σ') : ∑' (n : ℕ), LSeries.term f (↑σ') n * Real.fourierIntegral ψ (1 / (2 * Real.pi) * Real.log (↑n / x)) =\n  ∫ (t : ℝ), LSeries f (↑σ' + ↑t * Complex.I) * ψ t * ↑x ^ (↑t * Complex.I)"}
{"name":"one_add_sq_pos","declaration":"theorem one_add_sq_pos (u : ℝ) : 0 < 1 + u ^ 2"}
{"name":"wiener_ikehara_smooth","declaration":"theorem wiener_ikehara_smooth {A : ℝ} {Ψ : ℝ → ℂ} {G : ℂ → ℂ} {f : ℕ → ℂ} (hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm f σ')) (hcheby : cheby f) (hG : ContinuousOn G {s | 1 ≤ s.re}) (hG' : Set.EqOn G (fun s => LSeries f s - ↑A / (s - 1)) {s | 1 < s.re}) (hsmooth : ContDiff ℝ ⊤ Ψ) (hsupp : HasCompactSupport Ψ) (hplus : closure (Function.support Ψ) ⊆ Set.Ioi 0) : Filter.Tendsto (fun x => (∑' (n : ℕ), f n * Ψ (↑n / x)) / ↑x - ↑A * ∫ (y : ℝ) in Set.Ioi 0, Ψ y) Filter.atTop (nhds 0)"}
{"name":"W21.integrable_fourier","declaration":"theorem W21.integrable_fourier {c : ℝ} (ψ : W21) (hc : c ≠ 0) : MeasureTheory.Integrable (fun u => Real.fourierIntegral ψ.toFun (u / c)) MeasureTheory.volume"}
{"name":"pp'_deriv","declaration":"theorem pp'_deriv (a : ℝ) (x : ℝ) : HasDerivAt (pp' a) (a ^ 2 * 2) x"}
{"name":"decay_bounds_W21","declaration":"theorem decay_bounds_W21 {A : ℝ} (f : W21) (hA : ∀ (t : ℝ), ‖f.toFun t‖ ≤ A / (1 + t ^ 2)) (hA' : ∀ (t : ℝ), ‖deriv (deriv f.toFun) t‖ ≤ A / (1 + t ^ 2)) (u : ℝ) : ‖Real.fourierIntegral f.toFun u‖ ≤ (Real.pi + 1 / (4 * Real.pi)) * A / (1 + u ^ 2)"}
{"name":"bound_sum_log'","declaration":"theorem bound_sum_log' {f : ℕ → ℂ} {C : ℝ} (hf : chebyWith C f) {x : ℝ} (hx : 1 ≤ x) : ∑' (i : ℕ), ‖f i‖ / ↑i * (1 + (1 / (2 * Real.pi) * Real.log (↑i / x)) ^ 2)⁻¹ ≤ C * (1 + 2 * Real.pi ^ 2)"}
{"name":"WienerIkeharaInterval","declaration":"theorem WienerIkeharaInterval {A : ℝ} {a : ℝ} {b : ℝ} {G : ℂ → ℂ} {f : ℕ → ℝ} (hpos : 0 ≤ f) (hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm (fun n => ↑(f n)) σ')) (hcheby : cheby fun n => ↑(f n)) (hG : ContinuousOn G {s | 1 ≤ s.re}) (hG' : Set.EqOn G (fun s => LSeries (fun n => ↑(f n)) s - ↑A / (s - 1)) {s | 1 < s.re}) (ha : 0 < a) (hb : a ≤ b) : Filter.Tendsto (fun x => (∑' (n : ℕ), f n * Set.indicator (Set.Ico a b) 1 (↑n / x)) / x) Filter.atTop\n  (nhds (A * (b - a)))"}
{"name":"comp_exp_support","declaration":"theorem comp_exp_support {Ψ : ℝ → ℂ} (hsupp : HasCompactSupport Ψ) (hplus : closure (Function.support Ψ) ⊆ Set.Ioi 0) : HasCompactSupport (Ψ ∘ Real.exp)"}
{"name":"limiting_fourier_lim1_aux","declaration":"theorem limiting_fourier_lim1_aux {x : ℝ} {f : ℕ → ℂ} (hcheby : cheby f) (hx : 0 < x) (C : ℝ) (hC : 0 ≤ C) : Summable fun n => ‖f n‖ / ↑n * (C / (1 + (1 / (2 * Real.pi) * Real.log (↑n / x)) ^ 2))"}
{"name":"toSchwartz","declaration":"def toSchwartz (f : ℝ → ℂ) (h1 : ContDiff ℝ ⊤ f) (h2 : HasCompactSupport f) : SchwartzMap ℝ ℂ"}
{"name":"smooth_urysohn","declaration":"theorem smooth_urysohn (a : ℝ) (b : ℝ) (c : ℝ) (d : ℝ) (h1 : a < b) (h3 : c < d) : ∃ Ψ, ContDiff ℝ ⊤ Ψ ∧ HasCompactSupport Ψ ∧ Set.indicator (Set.Icc b c) 1 ≤ Ψ ∧ Ψ ≤ Set.indicator (Set.Ioo a d) 1"}
{"name":"quadratic_pos","declaration":"theorem quadratic_pos (a : ℝ) (b : ℝ) (c : ℝ) (x : ℝ) (ha : 0 < a) (hΔ : discrim a b c < 0) : 0 < a * x ^ 2 + b * x + c"}
{"name":"hh'","declaration":"def hh' (a : ℝ) (t : ℝ) : ℝ"}
{"name":"summable_congr_ae","declaration":"theorem summable_congr_ae {u : ℕ → ℝ} {v : ℕ → ℝ} (huv : u =ᶠ[Filter.atTop] v) : Summable u ↔ Summable v"}
{"name":"tendsto_mul_ceil_div","declaration":"/-- A version of the *Wiener-Ikehara Tauberian Theorem*: If `f` is a nonnegative arithmetic\nfunction whose L-series has a simple pole at `s = 1` with residue `A` and otherwise extends\ncontinuously to the closed half-plane `re s ≥ 1`, then `∑ n < N, f n` is asymptotic to `A*N`. -/\ntheorem tendsto_mul_ceil_div  : Filter.Tendsto (fun p => ↑⌈p.1 * ↑p.2⌉₊ / ↑p.2) (nhdsWithin 0 (Set.Ioi 0) ×ˢ Filter.atTop) (nhds 0)"}
{"name":"set_integral_ofReal","declaration":"theorem set_integral_ofReal {f : ℝ → ℝ} {s : Set ℝ} : ∫ (x : ℝ) in s, ↑(f x) = ↑(∫ (x : ℝ) in s, f x)"}
{"name":"le_floor_mul_iff","declaration":"theorem le_floor_mul_iff {n : ℕ} {b : ℝ} {x : ℝ} (hb : 0 ≤ b) (hx : 0 < x) : n ≤ ⌊b * x⌋₊ ↔ ↑n / x ≤ b"}
{"name":"hh_integrable_aux","declaration":"theorem hh_integrable_aux {a : ℝ} {b : ℝ} {c : ℝ} (ha : 0 < a) (hb : 0 < b) (hc : 0 < c) : MeasureTheory.IntegrableOn (fun t => a * hh b (t / c)) (Set.Ici 0) MeasureTheory.volume ∧\n  ∫ (t : ℝ) in Set.Ioi 0, a * hh b (t / c) = a * c / b * Real.pi"}
{"name":"gg","declaration":"def gg (x : ℝ) (i : ℝ) : ℝ"}
{"name":"exists_trunc","declaration":"def exists_trunc  : trunc"}
{"name":"comp_exp_support0","declaration":"theorem comp_exp_support0 {Ψ : ℝ → ℂ} (hplus : closure (Function.support Ψ) ⊆ Set.Ioi 0) : ∀ᶠ (x : ℝ) in nhds 0, Ψ x = 0"}
{"name":"limiting_fourier_aux","declaration":"theorem limiting_fourier_aux {A : ℝ} {x : ℝ} {G : ℂ → ℂ} {f : ℕ → ℂ} (hG' : Set.EqOn G (fun s => LSeries f s - ↑A / (s - 1)) {s | 1 < s.re}) (hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm f σ')) (ψ : CS 2 ℂ) (hx : 1 ≤ x) (σ' : ℝ) (hσ' : 1 < σ') : ∑' (n : ℕ), LSeries.term f (↑σ') n * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (↑n / x)) -\n    ↑A * ↑(x ^ (1 - σ')) *\n      ∫ (u : ℝ) in Set.Ici (-Real.log x),\n        ↑(Real.exp (-u * (σ' - 1))) * Real.fourierIntegral ψ.toFun (u / (2 * Real.pi)) =\n  ∫ (t : ℝ), G (↑σ' + ↑t * Complex.I) * ψ.toFun t * ↑x ^ (↑t * Complex.I)"}
{"name":"isLittleO_mul_add_sq","declaration":"theorem isLittleO_mul_add_sq (a : ℝ) (b : ℝ) : (fun x => a * x + b) =o[Filter.atTop] fun x => x ^ 2"}
{"name":"isBigO_log_mul_add","declaration":"theorem isBigO_log_mul_add {a : ℝ} (ha : 0 < a) (b : ℝ) : Real.log =O[Filter.atTop] fun x => Real.log (a * x + b)"}
{"name":"hh_continuous","declaration":"theorem hh_continuous (a : ℝ) : ContinuousOn (hh a) (Set.Ioi 0)"}
{"name":"nabla_log","declaration":"theorem nabla_log {b : ℝ} (hb : 0 < b) : (nabla fun x => Real.log (x / b)) =O[Filter.atTop] fun x => 1 / x"}
{"name":"cancel_aux","declaration":"theorem cancel_aux {C : ℝ} {f : ℕ → ℝ} {g : ℕ → ℝ} (hf : 0 ≤ f) (hg : 0 ≤ g) (hf' : ∀ (n : ℕ), cumsum f n ≤ C * ↑n) (hg' : Antitone g) (n : ℕ) : (Finset.sum (Finset.range n) fun i => f i * g i) ≤\n  g (n - 1) * (C * ↑n) +\n    (C * (↑(n - 1 - 1) + 1) * g 0 - C * (↑(n - 1 - 1) + 1) * g (n - 1) -\n      ((n - 1 - 1) • (C * g 0) - Finset.sum (Finset.range (n - 1 - 1)) fun x => C * g (x + 1)))"}
{"name":"S_sub_S","declaration":"theorem S_sub_S {𝕜 : Type} [RCLike 𝕜] {f : ℕ → 𝕜} {ε : ℝ} {N : ℕ} (hε : ε ≤ 1) : S f 0 N - S f ε N = cumsum f ⌈ε * ↑N⌉₊ / ↑N"}
{"name":"WI_sum_Iab_le","declaration":"theorem WI_sum_Iab_le {a : ℝ} {b : ℝ} {x : ℝ} {f : ℕ → ℝ} (hpos : 0 ≤ f) {C : ℝ} (hcheby : chebyWith C fun n => ↑(f n)) (hb : 0 < b) (hxb : 2 / b < x) : (∑' (n : ℕ), f n * Set.indicator (Set.Ico a b) 1 (↑n / x)) / x ≤ C * 2 * b"}
{"name":"hh_deriv","declaration":"theorem hh_deriv (a : ℝ) {t : ℝ} (ht : t ≠ 0) : HasDerivAt (hh a) (hh' a t) t"}
{"name":"bound_sum_log","declaration":"theorem bound_sum_log {f : ℕ → ℂ} {C : ℝ} (hf0 : f 0 = 0) (hf : chebyWith C f) {x : ℝ} (hx : 1 ≤ x) : ∑' (i : ℕ), ‖f i‖ / ↑i * (1 + (1 / (2 * Real.pi) * Real.log (↑i / x)) ^ 2)⁻¹ ≤\n  C * (1 + ∫ (t : ℝ) in Set.Ioi 0, hh (1 / (2 * Real.pi)) t)"}
{"name":"bound_I1'","declaration":"theorem bound_I1' {f : ℕ → ℂ} {C : ℝ} (x : ℝ) (hx : 1 ≤ x) (ψ : W21) (hcheby : chebyWith C f) : ‖∑' (n : ℕ), f n / ↑n * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (↑n / x))‖ ≤\n  W21.norm ψ.toFun * C * (1 + 2 * Real.pi ^ 2)"}
{"name":"log_add_div_isBigO_log","declaration":"theorem log_add_div_isBigO_log (a : ℝ) {b : ℝ} (hb : 0 < b) : (fun x => Real.log ((x + a) / b)) =O[Filter.atTop] fun x => Real.log x"}
{"name":"wiener_ikehara_smooth_aux","declaration":"theorem wiener_ikehara_smooth_aux {Ψ : ℝ → ℂ} (l0 : Continuous Ψ) (hsupp : HasCompactSupport Ψ) (hplus : closure (Function.support Ψ) ⊆ Set.Ioi 0) (x : ℝ) (hx : 0 < x) : ∫ (u : ℝ) in Set.Ioi (-Real.log x), ↑(Real.exp u) * Ψ (Real.exp u) = ∫ (y : ℝ) in Set.Ioi (1 / x), Ψ y"}
{"name":"crude_upper_bound","declaration":"theorem crude_upper_bound {A : ℝ} {G : ℂ → ℂ} {f : ℕ → ℝ} (hpos : 0 ≤ f) (hG : ContinuousOn G {s | 1 ≤ s.re}) (hG' : Set.EqOn G (fun s => LSeries (fun n => ↑(f n)) s - ↑A / (s - 1)) {s | 1 < s.re}) (hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm (fun n => ↑(f n)) σ')) (ψ : CS 2 ℂ) (hψpos : ∀ (y : ℝ), 0 ≤ (Real.fourierIntegral ψ.toFun y).re ∧ (Real.fourierIntegral ψ.toFun y).im = 0) : ∃ B,\n  ∀ (x : ℝ),\n    0 < x → ‖∑' (n : ℕ), ↑(f n) / ↑n * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (↑n / x))‖ ≤ B"}
{"name":"Asymptotics.IsBigO.add_isLittleO_right","declaration":"theorem Asymptotics.IsBigO.add_isLittleO_right {f : ℝ → ℝ} {g : ℝ → ℝ} (h : g =o[Filter.atTop] f) : f =O[Filter.atTop] (f + g)"}
{"name":"sum_le_integral","declaration":"theorem sum_le_integral {x₀ : ℝ} {f : ℝ → ℝ} {n : ℕ} (hf : AntitoneOn f (Set.Ioc x₀ (x₀ + ↑n))) (hfi : MeasureTheory.IntegrableOn f (Set.Icc x₀ (x₀ + ↑n)) MeasureTheory.volume) : (Finset.sum (Finset.range n) fun i => f (x₀ + ↑(i + 1))) ≤ ∫ (x : ℝ) in x₀..x₀ + ↑n, f x"}
{"name":"summable_iff_bounded","declaration":"theorem summable_iff_bounded {u : ℕ → ℝ} (hu : 0 ≤ u) : Summable u ↔ Filter.BoundedAtFilter Filter.atTop (cumsum u)"}
{"name":"BoundedAtFilter.add_const","declaration":"theorem BoundedAtFilter.add_const {u : ℕ → ℝ} {c : ℝ} : (Filter.BoundedAtFilter Filter.atTop fun n => u n + c) ↔ Filter.BoundedAtFilter Filter.atTop u"}
{"name":"hh'_nonpos","declaration":"theorem hh'_nonpos {a : ℝ} {x : ℝ} (ha : a ∈ Set.Ioo (-1) 1) : hh' a x ≤ 0"}
{"name":"nnabla_bound","declaration":"theorem nnabla_bound (C : ℝ) {x : ℝ} (hx : 0 < x) : (nnabla fun n => C / (1 + (Real.log (n / x) / (2 * Real.pi)) ^ 2) / n) =O[Filter.atTop] fun n =>\n  (n ^ 2 * Real.log n ^ 2)⁻¹"}
{"name":"gg_l1","declaration":"theorem gg_l1 {x : ℝ} (hx : 0 < x) (n : ℕ) : |gg x ↑n| ≤ 1 / ↑n"}
{"name":"interval_approx_inf","declaration":"theorem interval_approx_inf {a : ℝ} {b : ℝ} (ha : 0 < a) (hab : a < b) : ∀ᶠ (ε : ℝ) in nhdsWithin 0 (Set.Ioi 0),\n  ∃ ψ,\n    ContDiff ℝ ⊤ ψ ∧\n      HasCompactSupport ψ ∧\n        closure (Function.support ψ) ⊆ Set.Ioi 0 ∧\n          ψ ≤ Set.indicator (Set.Ico a b) 1 ∧ b - a - ε ≤ ∫ (y : ℝ) in Set.Ioi 0, ψ y"}
{"name":"WI_sum_le","declaration":"theorem WI_sum_le {x : ℝ} {f : ℕ → ℝ} {g₁ : ℝ → ℝ} {g₂ : ℝ → ℝ} (hf : 0 ≤ f) (hg : g₁ ≤ g₂) (hx : 0 < x) (hg₁ : HasCompactSupport g₁) (hg₂ : HasCompactSupport g₂) : (∑' (n : ℕ), f n * g₁ (↑n / x)) / x ≤ (∑' (n : ℕ), f n * g₂ (↑n / x)) / x"}
{"name":"lt_ceil_mul_iff","declaration":"theorem lt_ceil_mul_iff {n : ℕ} {b : ℝ} {x : ℝ} (hx : 0 < x) : n < ⌈b * x⌉₊ ↔ ↑n / x < b"}
{"name":"nabla_log_main","declaration":"theorem nabla_log_main  : nabla Real.log =O[Filter.atTop] fun x => 1 / x"}
{"name":"ceil_mul_le_iff","declaration":"theorem ceil_mul_le_iff {n : ℕ} {a : ℝ} {x : ℝ} (hx : 0 < x) : ⌈a * x⌉₊ ≤ n ↔ a ≤ ↑n / x"}
{"name":"nnabla_mul_log_sq","declaration":"theorem nnabla_mul_log_sq (a : ℝ) {b : ℝ} (hb : 0 < b) : (nabla fun x => x * (a + Real.log (x / b) ^ 2)) =O[Filter.atTop] fun x => Real.log x ^ 2"}
{"name":"isBigO_pow_pow_of_le","declaration":"theorem isBigO_pow_pow_of_le {m : ℕ} {n : ℕ} (h : m ≤ n) : (fun x => x ^ m) =O[Filter.atTop] fun x => x ^ n"}
{"name":"limiting_fourier_lim1","declaration":"theorem limiting_fourier_lim1 {x : ℝ} {f : ℕ → ℂ} (hcheby : cheby f) (ψ : W21) (hx : 0 < x) : Filter.Tendsto\n  (fun σ' => ∑' (n : ℕ), LSeries.term f (↑σ') n * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (↑n / x)))\n  (nhdsWithin 1 (Set.Ioi 1))\n  (nhds (∑' (n : ℕ), f n / ↑n * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (↑n / x))))"}
{"name":"chebyWith","declaration":"def chebyWith (C : ℝ) (f : ℕ → ℂ) : Prop"}
{"name":"nnabla_cast","declaration":"theorem nnabla_cast {E : Type u_2} (u : ℝ → E) [Sub E] : nnabla u ∘ Nat.cast = nnabla (u ∘ Nat.cast)"}
{"name":"WI_tendsto_aux","declaration":"theorem WI_tendsto_aux (a : ℝ) (b : ℝ) {A : ℝ} (hA : 0 < A) : Filter.Tendsto (fun c => c / A - (b - a)) (nhdsWithin (A * (b - a)) (Set.Ioi (A * (b - a)))) (nhdsWithin 0 (Set.Ioi 0))"}
{"name":"first_fourier_aux1","declaration":"theorem first_fourier_aux1 {ψ : ℝ → ℂ} (hψ : Continuous ψ) {x : ℝ} (n : ℕ) : Measurable fun u => ↑‖Real.fourierChar (-(u * (1 / (2 * Real.pi) * Real.log (↑n / x)))) • ψ u‖₊"}
{"name":"cumsum_zero","declaration":"theorem cumsum_zero {E : Type u_2} [AddCommMonoid E] {u : ℕ → E} : cumsum u 0 = 0"}
{"name":"nnabla_bound_aux1","declaration":"theorem nnabla_bound_aux1 (a : ℝ) {b : ℝ} (hb : 0 < b) : Filter.Tendsto (fun x => x * (a + Real.log (x / b) ^ 2)) Filter.atTop Filter.atTop"}
{"name":"neg_cumsum","declaration":"theorem neg_cumsum {E : Type u_2} [AddCommGroup E] {u : ℕ → E} : -cumsum u = cumsum (-u)"}
{"name":"neg_nabla","declaration":"theorem neg_nabla {α : Type u_1} {E : Type u_2} [OfNat α 1] [Add α] [Ring E] {u : α → E} : -nabla u = nnabla u"}
{"name":"cumsum","declaration":"def cumsum {E : Type u_2} [AddCommMonoid E] (u : ℕ → E) (n : ℕ) : E"}
{"name":"sum_telescopic","declaration":"theorem sum_telescopic (a : ℕ → ℝ) (n : ℕ) : (Finset.sum (Finset.range n) fun i => a (i + 1) - a i) = a n - a 0"}
{"name":"limiting_fourier_variant","declaration":"theorem limiting_fourier_variant {A : ℝ} {x : ℝ} {G : ℂ → ℂ} {f : ℕ → ℝ} (hpos : 0 ≤ f) (hG : ContinuousOn G {s | 1 ≤ s.re}) (hG' : Set.EqOn G (fun s => LSeries (fun n => ↑(f n)) s - ↑A / (s - 1)) {s | 1 < s.re}) (hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm (fun n => ↑(f n)) σ')) (ψ : CS 2 ℂ) (hψpos : ∀ (y : ℝ), 0 ≤ (Real.fourierIntegral ψ.toFun y).re ∧ (Real.fourierIntegral ψ.toFun y).im = 0) (hx : 1 ≤ x) : ∑' (n : ℕ), ↑(f n) / ↑n * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (↑n / x)) -\n    ↑A * ∫ (u : ℝ) in Set.Ici (-Real.log x), Real.fourierIntegral ψ.toFun (u / (2 * Real.pi)) =\n  ∫ (t : ℝ), G (1 + ↑t * Complex.I) * ψ.toFun t * ↑x ^ (↑t * Complex.I)"}
{"name":"WeakPNT","declaration":"theorem WeakPNT  : Filter.Tendsto (fun N => cumsum (⇑ArithmeticFunction.vonMangoldt) N / ↑N) Filter.atTop (nhds 1)"}
{"name":"interval_approx_sup","declaration":"theorem interval_approx_sup {a : ℝ} {b : ℝ} (ha : 0 < a) (hab : a < b) : ∀ᶠ (ε : ℝ) in nhdsWithin 0 (Set.Ioi 0),\n  ∃ ψ,\n    ContDiff ℝ ⊤ ψ ∧\n      HasCompactSupport ψ ∧\n        closure (Function.support ψ) ⊆ Set.Ioi 0 ∧\n          Set.indicator (Set.Ico a b) 1 ≤ ψ ∧ ∫ (y : ℝ) in Set.Ioi 0, ψ y ≤ b - a + ε"}
{"name":"gg_le_one","declaration":"theorem gg_le_one {x : ℝ} (i : ℕ) : gg x ↑i ≤ 1"}
{"name":"hh_nonneg","declaration":"theorem hh_nonneg (a : ℝ) {t : ℝ} (ht : 0 ≤ t) : 0 ≤ hh a t"}
{"name":"bound_sum_log0","declaration":"theorem bound_sum_log0 {f : ℕ → ℂ} {C : ℝ} (hf : chebyWith C f) {x : ℝ} (hx : 1 ≤ x) : ∑' (i : ℕ), ‖f i‖ / ↑i * (1 + (1 / (2 * Real.pi) * Real.log (↑i / x)) ^ 2)⁻¹ ≤\n  C * (1 + ∫ (t : ℝ) in Set.Ioi 0, hh (1 / (2 * Real.pi)) t)"}
{"name":"pp'_deriv_eq","declaration":"theorem pp'_deriv_eq (a : ℝ) : deriv (pp' a) = fun x => a ^ 2 * 2"}
{"name":"WienerIkeharaInterval_discrete","declaration":"theorem WienerIkeharaInterval_discrete {A : ℝ} {a : ℝ} {b : ℝ} {G : ℂ → ℂ} {f : ℕ → ℝ} (hpos : 0 ≤ f) (hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm (fun n => ↑(f n)) σ')) (hcheby : cheby fun n => ↑(f n)) (hG : ContinuousOn G {s | 1 ≤ s.re}) (hG' : Set.EqOn G (fun s => LSeries (fun n => ↑(f n)) s - ↑A / (s - 1)) {s | 1 < s.re}) (ha : 0 < a) (hb : a ≤ b) : Filter.Tendsto (fun x => (Finset.sum (Finset.Ico ⌈a * x⌉₊ ⌈b * x⌉₊) fun n => f n) / x) Filter.atTop (nhds (A * (b - a)))"}
{"name":"limiting_fourier","declaration":"theorem limiting_fourier {A : ℝ} {x : ℝ} {G : ℂ → ℂ} {f : ℕ → ℂ} (hcheby : cheby f) (hG : ContinuousOn G {s | 1 ≤ s.re}) (hG' : Set.EqOn G (fun s => LSeries f s - ↑A / (s - 1)) {s | 1 < s.re}) (hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm f σ')) (ψ : CS 2 ℂ) (hx : 1 ≤ x) : ∑' (n : ℕ), f n / ↑n * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (↑n / x)) -\n    ↑A * ∫ (u : ℝ) in Set.Ici (-Real.log x), Real.fourierIntegral ψ.toFun (u / (2 * Real.pi)) =\n  ∫ (t : ℝ), G (1 + ↑t * Complex.I) * ψ.toFun t * ↑x ^ (↑t * Complex.I)"}
{"name":"limiting_cor_aux","declaration":"theorem limiting_cor_aux {f : ℝ → ℂ} : Filter.Tendsto (fun x => ∫ (t : ℝ), f t * ↑x ^ (↑t * Complex.I)) Filter.atTop (nhds 0)"}
{"name":"nterm","declaration":"def nterm (f : ℕ → ℂ) (σ' : ℝ) (n : ℕ) : ℝ"}
{"name":"WI_summable","declaration":"theorem WI_summable {x : ℝ} {f : ℕ → ℝ} {g : ℝ → ℝ} (hg : HasCompactSupport g) (hx : 0 < x) : Summable fun n => f n * g (↑n / x)"}
{"name":"nabla_mul","declaration":"theorem nabla_mul {α : Type u_1} {E : Type u_2} [OfNat α 1] [Add α] [Ring E] {u : α → E} {c : E} : (nabla fun n => c * u n) = c • nabla u"}
{"name":"continuous_multiplicative_ofAdd","declaration":"theorem continuous_multiplicative_ofAdd  : Continuous ⇑Multiplicative.ofAdd"}
{"name":"log_sq_isbigo_mul","declaration":"theorem log_sq_isbigo_mul {a : ℝ} {b : ℝ} (hb : 0 < b) : (fun x => Real.log x ^ 2) =O[Filter.atTop] fun x => a + Real.log (x / b) ^ 2"}
{"name":"Finset.sum_shift_front","declaration":"theorem Finset.sum_shift_front {E : Type u_1} [Ring E] {u : ℕ → E} {n : ℕ} : cumsum u (n + 1) = u 0 + cumsum (shift u) n"}
{"name":"bounded_of_shift","declaration":"theorem bounded_of_shift {u : ℕ → ℝ} (h : Filter.BoundedAtFilter Filter.atTop (shift u)) : Filter.BoundedAtFilter Filter.atTop u"}
{"name":"shift","declaration":"def shift {α : Type u_1} {E : Type u_2} [OfNat α 1] [Add α] (u : α → E) (n : α) : E"}
{"name":"fourier_surjection_on_schwartz","declaration":"theorem fourier_surjection_on_schwartz (f : SchwartzMap ℝ ℂ) : ∃ g, Real.fourierIntegral ⇑g = ⇑f"}
{"name":"hh_integral'","declaration":"theorem hh_integral'  : ∫ (t : ℝ) in Set.Ioi 0, hh (1 / (2 * Real.pi)) t = 2 * Real.pi ^ 2"}
{"name":"wiener_ikehara_smooth_sub","declaration":"theorem wiener_ikehara_smooth_sub {A : ℝ} {Ψ : ℝ → ℂ} (h1 : MeasureTheory.Integrable Ψ MeasureTheory.volume) (hplus : closure (Function.support Ψ) ⊆ Set.Ioi 0) : Filter.Tendsto (fun x => (↑A * ∫ (y : ℝ) in Set.Ioi x⁻¹, Ψ y) - ↑A * ∫ (y : ℝ) in Set.Ioi 0, Ψ y) Filter.atTop (nhds 0)"}
{"name":"cancel_main","declaration":"theorem cancel_main {C : ℝ} {f : ℕ → ℝ} {g : ℕ → ℝ} (hf : 0 ≤ f) (hg : 0 ≤ g) (hf' : ∀ (n : ℕ), cumsum f n ≤ C * ↑n) (hg' : Antitone g) (n : ℕ) (hn : 2 ≤ n) : cumsum (f * g) n ≤ C * cumsum g n"}
{"name":"tsum_indicator","declaration":"theorem tsum_indicator {a : ℝ} {b : ℝ} {x : ℝ} {f : ℕ → ℝ} (hx : 0 < x) : ∑' (n : ℕ), f n * Set.indicator (Set.Ico a b) 1 (↑n / x) = Finset.sum (Finset.Ico ⌈a * x⌉₊ ⌈b * x⌉₊) fun n => f n"}
{"name":"sum_range_succ","declaration":"theorem sum_range_succ (a : ℕ → ℝ) (n : ℕ) : (Finset.sum (Finset.range n) fun i => a (i + 1)) = (Finset.sum (Finset.range (n + 1)) fun i => a i) - a 0"}
{"name":"decay_bounds_cor","declaration":"theorem decay_bounds_cor (ψ : W21) : ∃ C, ∀ (u : ℝ), ‖Real.fourierIntegral ψ.toFun u‖ ≤ C / (1 + u ^ 2)"}
{"name":"limiting_fourier_lim3","declaration":"theorem limiting_fourier_lim3 {x : ℝ} {G : ℂ → ℂ} (hG : ContinuousOn G {s | 1 ≤ s.re}) (ψ : CS 2 ℂ) (hx : 1 ≤ x) : Filter.Tendsto (fun σ' => ∫ (t : ℝ), G (↑σ' + ↑t * Complex.I) * ψ.toFun t * ↑x ^ (↑t * Complex.I))\n  (nhdsWithin 1 (Set.Ioi 1)) (nhds (∫ (t : ℝ), G (1 + ↑t * Complex.I) * ψ.toFun t * ↑x ^ (↑t * Complex.I)))"}