Simplify Common Voice code (#3817)
Browse files* simplify common_voice
* one iter_archive per split
Commit from https://github.com/huggingface/datasets/commit/f5929980e7d857d491a20c35305ea01a24c25326
- common_voice.py +59 -90
common_voice.py
CHANGED
@@ -659,135 +659,100 @@ class CommonVoice(datasets.GeneratorBasedBuilder):
|
|
659 |
|
660 |
def _split_generators(self, dl_manager):
|
661 |
"""Returns SplitGenerators."""
|
662 |
-
|
663 |
archive_path = dl_manager.download(_DATA_URL.format(self.config.name))
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
path_to_data = os.path.join(extracted_dir, "cv-corpus-6.1-2020-12-11", self.config.name)
|
685 |
-
path_to_clips = os.path.join(path_to_data, "clips")
|
686 |
-
metadata_filepaths = {
|
687 |
-
split: os.path.join(path_to_data, f"{split}.tsv")
|
688 |
-
for split in ["train", "test", "dev", "other", "validated", "invalidated"]
|
689 |
-
}
|
690 |
|
691 |
return [
|
692 |
datasets.SplitGenerator(
|
693 |
name=datasets.Split.TRAIN,
|
694 |
gen_kwargs={
|
695 |
-
"
|
696 |
-
"archive_iterator":
|
697 |
-
|
|
|
|
|
698 |
"path_to_clips": path_to_clips,
|
699 |
},
|
700 |
),
|
701 |
datasets.SplitGenerator(
|
702 |
name=datasets.Split.TEST,
|
703 |
gen_kwargs={
|
704 |
-
"
|
705 |
-
"archive_iterator":
|
706 |
-
|
|
|
|
|
707 |
"path_to_clips": path_to_clips,
|
708 |
},
|
709 |
),
|
710 |
datasets.SplitGenerator(
|
711 |
name=datasets.Split.VALIDATION,
|
712 |
gen_kwargs={
|
713 |
-
"
|
714 |
-
"archive_iterator":
|
715 |
-
|
|
|
|
|
716 |
"path_to_clips": path_to_clips,
|
717 |
},
|
718 |
),
|
719 |
datasets.SplitGenerator(
|
720 |
name="other",
|
721 |
gen_kwargs={
|
722 |
-
"
|
723 |
-
"archive_iterator":
|
724 |
-
|
|
|
|
|
725 |
"path_to_clips": path_to_clips,
|
726 |
},
|
727 |
),
|
728 |
datasets.SplitGenerator(
|
729 |
name="validated",
|
730 |
gen_kwargs={
|
731 |
-
"
|
732 |
-
"archive_iterator":
|
733 |
-
|
|
|
|
|
734 |
"path_to_clips": path_to_clips,
|
735 |
},
|
736 |
),
|
737 |
datasets.SplitGenerator(
|
738 |
name="invalidated",
|
739 |
gen_kwargs={
|
740 |
-
"
|
741 |
-
"archive_iterator":
|
742 |
-
|
|
|
|
|
743 |
"path_to_clips": path_to_clips,
|
744 |
},
|
745 |
),
|
746 |
]
|
747 |
|
748 |
-
def _generate_examples(self,
|
749 |
"""Yields examples."""
|
750 |
-
if streaming:
|
751 |
-
yield from self._generate_examples_streaming(archive_iterator, filepath, path_to_clips)
|
752 |
-
else:
|
753 |
-
yield from self._generate_examples_non_streaming(filepath, path_to_clips)
|
754 |
-
|
755 |
-
def _generate_examples_non_streaming(self, filepath, path_to_clips):
|
756 |
-
|
757 |
-
data_fields = list(self._info().features.keys())
|
758 |
-
|
759 |
-
# audio is not a header of the csv files
|
760 |
-
data_fields.remove("audio")
|
761 |
-
path_idx = data_fields.index("path")
|
762 |
-
|
763 |
-
with open(filepath, encoding="utf-8") as f:
|
764 |
-
lines = f.readlines()
|
765 |
-
headline = lines[0]
|
766 |
-
|
767 |
-
column_names = headline.strip().split("\t")
|
768 |
-
assert (
|
769 |
-
column_names == data_fields
|
770 |
-
), f"The file should have {data_fields} as column names, but has {column_names}"
|
771 |
-
|
772 |
-
for id_, line in enumerate(lines[1:]):
|
773 |
-
field_values = line.strip().split("\t")
|
774 |
-
|
775 |
-
# set absolute path for mp3 audio file
|
776 |
-
field_values[path_idx] = os.path.join(path_to_clips, field_values[path_idx])
|
777 |
-
|
778 |
-
# if data is incomplete, fill with empty values
|
779 |
-
if len(field_values) < len(data_fields):
|
780 |
-
field_values += (len(data_fields) - len(field_values)) * ["''"]
|
781 |
-
|
782 |
-
result = {key: value for key, value in zip(data_fields, field_values)}
|
783 |
-
|
784 |
-
# set audio feature
|
785 |
-
result["audio"] = field_values[path_idx]
|
786 |
-
|
787 |
-
yield id_, result
|
788 |
-
|
789 |
-
def _generate_examples_streaming(self, archive_iterator, filepath, path_to_clips):
|
790 |
-
"""Yields examples in streaming mode."""
|
791 |
data_fields = list(self._info().features.keys())
|
792 |
|
793 |
# audio is not a header of the csv files
|
@@ -796,8 +761,10 @@ class CommonVoice(datasets.GeneratorBasedBuilder):
|
|
796 |
|
797 |
all_field_values = {}
|
798 |
metadata_found = False
|
|
|
799 |
for path, f in archive_iterator:
|
800 |
-
|
|
|
801 |
metadata_found = True
|
802 |
lines = f.readlines()
|
803 |
headline = lines[0].decode("utf-8")
|
@@ -811,11 +778,13 @@ class CommonVoice(datasets.GeneratorBasedBuilder):
|
|
811 |
# set full path for mp3 audio file
|
812 |
audio_path = "/".join([path_to_clips, field_values[path_idx]])
|
813 |
all_field_values[audio_path] = field_values
|
|
|
814 |
elif path.startswith(path_to_clips):
|
815 |
assert metadata_found, "Found audio clips before the metadata TSV file."
|
816 |
if not all_field_values:
|
817 |
break
|
818 |
if path in all_field_values:
|
|
|
819 |
field_values = all_field_values[path]
|
820 |
|
821 |
# if data is incomplete, fill with empty values
|
@@ -826,7 +795,7 @@ class CommonVoice(datasets.GeneratorBasedBuilder):
|
|
826 |
|
827 |
# set audio feature
|
828 |
result["audio"] = {"path": path, "bytes": f.read()}
|
829 |
-
# set path to None
|
830 |
-
result["path"] = None
|
831 |
|
832 |
yield path, result
|
|
|
659 |
|
660 |
def _split_generators(self, dl_manager):
|
661 |
"""Returns SplitGenerators."""
|
662 |
+
# Download the TAR archive that contains the audio files:
|
663 |
archive_path = dl_manager.download(_DATA_URL.format(self.config.name))
|
664 |
+
|
665 |
+
# First we locate the data using the path within the archive:
|
666 |
+
path_to_data = "/".join(["cv-corpus-6.1-2020-12-11", self.config.name])
|
667 |
+
path_to_clips = "/".join([path_to_data, "clips"])
|
668 |
+
metadata_filepaths = {
|
669 |
+
split: "/".join([path_to_data, f"{split}.tsv"])
|
670 |
+
for split in ["train", "test", "dev", "other", "validated", "invalidated"]
|
671 |
+
}
|
672 |
+
# (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
|
673 |
+
local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else None
|
674 |
+
|
675 |
+
# To access the audio data from the TAR archives using the download manager,
|
676 |
+
# we have to use the dl_manager.iter_archive method.
|
677 |
+
#
|
678 |
+
# This is because dl_manager.download_and_extract
|
679 |
+
# doesn't work to stream TAR archives in streaming mode.
|
680 |
+
# (we have to stream the files of a TAR archive one by one)
|
681 |
+
#
|
682 |
+
# The iter_archive method returns an iterable of (path_within_archive, file_obj) for every
|
683 |
+
# file in the TAR archive.
|
|
|
|
|
|
|
|
|
|
|
|
|
684 |
|
685 |
return [
|
686 |
datasets.SplitGenerator(
|
687 |
name=datasets.Split.TRAIN,
|
688 |
gen_kwargs={
|
689 |
+
"local_extracted_archive": local_extracted_archive,
|
690 |
+
"archive_iterator": dl_manager.iter_archive(
|
691 |
+
archive_path
|
692 |
+
), # use iter_archive here to access the files in the TAR archives
|
693 |
+
"metadata_filepath": metadata_filepaths["train"],
|
694 |
"path_to_clips": path_to_clips,
|
695 |
},
|
696 |
),
|
697 |
datasets.SplitGenerator(
|
698 |
name=datasets.Split.TEST,
|
699 |
gen_kwargs={
|
700 |
+
"local_extracted_archive": local_extracted_archive,
|
701 |
+
"archive_iterator": dl_manager.iter_archive(
|
702 |
+
archive_path
|
703 |
+
), # use iter_archive here to access the files in the TAR archives
|
704 |
+
"metadata_filepath": metadata_filepaths["test"],
|
705 |
"path_to_clips": path_to_clips,
|
706 |
},
|
707 |
),
|
708 |
datasets.SplitGenerator(
|
709 |
name=datasets.Split.VALIDATION,
|
710 |
gen_kwargs={
|
711 |
+
"local_extracted_archive": local_extracted_archive,
|
712 |
+
"archive_iterator": dl_manager.iter_archive(
|
713 |
+
archive_path
|
714 |
+
), # use iter_archive here to access the files in the TAR archives
|
715 |
+
"metadata_filepath": metadata_filepaths["dev"],
|
716 |
"path_to_clips": path_to_clips,
|
717 |
},
|
718 |
),
|
719 |
datasets.SplitGenerator(
|
720 |
name="other",
|
721 |
gen_kwargs={
|
722 |
+
"local_extracted_archive": local_extracted_archive,
|
723 |
+
"archive_iterator": dl_manager.iter_archive(
|
724 |
+
archive_path
|
725 |
+
), # use iter_archive here to access the files in the TAR archives
|
726 |
+
"metadata_filepath": metadata_filepaths["other"],
|
727 |
"path_to_clips": path_to_clips,
|
728 |
},
|
729 |
),
|
730 |
datasets.SplitGenerator(
|
731 |
name="validated",
|
732 |
gen_kwargs={
|
733 |
+
"local_extracted_archive": local_extracted_archive,
|
734 |
+
"archive_iterator": dl_manager.iter_archive(
|
735 |
+
archive_path
|
736 |
+
), # use iter_archive here to access the files in the TAR archives
|
737 |
+
"metadata_filepath": metadata_filepaths["validated"],
|
738 |
"path_to_clips": path_to_clips,
|
739 |
},
|
740 |
),
|
741 |
datasets.SplitGenerator(
|
742 |
name="invalidated",
|
743 |
gen_kwargs={
|
744 |
+
"local_extracted_archive": local_extracted_archive,
|
745 |
+
"archive_iterator": dl_manager.iter_archive(
|
746 |
+
archive_path
|
747 |
+
), # use iter_archive here to access the files in the TAR archives
|
748 |
+
"metadata_filepath": metadata_filepaths["invalidated"],
|
749 |
"path_to_clips": path_to_clips,
|
750 |
},
|
751 |
),
|
752 |
]
|
753 |
|
754 |
+
def _generate_examples(self, local_extracted_archive, archive_iterator, metadata_filepath, path_to_clips):
|
755 |
"""Yields examples."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
756 |
data_fields = list(self._info().features.keys())
|
757 |
|
758 |
# audio is not a header of the csv files
|
|
|
761 |
|
762 |
all_field_values = {}
|
763 |
metadata_found = False
|
764 |
+
# Here we iterate over all the files within the TAR archive:
|
765 |
for path, f in archive_iterator:
|
766 |
+
# Parse the metadata CSV file
|
767 |
+
if path == metadata_filepath:
|
768 |
metadata_found = True
|
769 |
lines = f.readlines()
|
770 |
headline = lines[0].decode("utf-8")
|
|
|
778 |
# set full path for mp3 audio file
|
779 |
audio_path = "/".join([path_to_clips, field_values[path_idx]])
|
780 |
all_field_values[audio_path] = field_values
|
781 |
+
# Else, read the audio file and yield an example
|
782 |
elif path.startswith(path_to_clips):
|
783 |
assert metadata_found, "Found audio clips before the metadata TSV file."
|
784 |
if not all_field_values:
|
785 |
break
|
786 |
if path in all_field_values:
|
787 |
+
# retrieve the metadata corresponding to this audio file
|
788 |
field_values = all_field_values[path]
|
789 |
|
790 |
# if data is incomplete, fill with empty values
|
|
|
795 |
|
796 |
# set audio feature
|
797 |
result["audio"] = {"path": path, "bytes": f.read()}
|
798 |
+
# set path to None if the audio file doesn't exist locally (i.e. in streaming mode)
|
799 |
+
result["path"] = os.path.join(local_extracted_archive, path) if local_extracted_archive else None
|
800 |
|
801 |
yield path, result
|