Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-label-classification
Languages:
English
Size:
10K<n<100K
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset""" | |
import os | |
from zipfile import ZipFile | |
import datasets | |
_CITATION = """\ | |
@InProceedings{li2017dailydialog, | |
author = {Li, Yanran and Su, Hui and Shen, Xiaoyu and Li, Wenjie and Cao, Ziqiang and Niu, Shuzi}, | |
title = {DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset}, | |
booktitle = {Proceedings of The 8th International Joint Conference on Natural Language Processing (IJCNLP 2017)}, | |
year = {2017} | |
} | |
""" | |
_DESCRIPTION = """\ | |
We develop a high-quality multi-turn dialog dataset, DailyDialog, which is intriguing in several aspects. | |
The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way | |
and cover various topics about our daily life. We also manually label the developed dataset with communication | |
intention and emotion information. Then, we evaluate existing approaches on DailyDialog dataset and hope it | |
benefit the research field of dialog systems. | |
""" | |
_URL = "http://yanran.li/files/ijcnlp_dailydialog.zip" | |
act_label = { | |
"0": "__dummy__", # Added to be compatible out-of-the-box with datasets.ClassLabel | |
"1": "inform", | |
"2": "question", | |
"3": "directive", | |
"4": "commissive", | |
} | |
emotion_label = { | |
"0": "no emotion", | |
"1": "anger", | |
"2": "disgust", | |
"3": "fear", | |
"4": "happiness", | |
"5": "sadness", | |
"6": "surprise", | |
} | |
class DailyDialog(datasets.GeneratorBasedBuilder): | |
"""DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset""" | |
VERSION = datasets.Version("1.0.0") | |
__EOU__ = "__eou__" | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"dialog": datasets.features.Sequence(datasets.Value("string")), | |
"act": datasets.features.Sequence(datasets.ClassLabel(names=list(act_label.values()))), | |
"emotion": datasets.features.Sequence(datasets.ClassLabel(names=list(emotion_label.values()))), | |
} | |
), | |
supervised_keys=None, | |
homepage="http://yanran.li/dailydialog", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager: datasets.DownloadManager): | |
"""Returns SplitGenerators.""" | |
# dl_manager is a datasets.download.DownloadManager that can be used to | |
# download and extract URLs | |
dl_dir = dl_manager.download_and_extract(_URL) | |
data_dir = os.path.join(dl_dir, "ijcnlp_dailydialog") | |
# The splits are nested inside the zip | |
for name in ("train", "validation", "test"): | |
zip_fpath = os.path.join(data_dir, f"{name}.zip") | |
with ZipFile(zip_fpath) as zip_file: | |
zip_file.extractall(path=data_dir) | |
zip_file.close() | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"file_path": os.path.join(data_dir, "train", "dialogues_train.txt"), | |
"act_path": os.path.join(data_dir, "train", "dialogues_act_train.txt"), | |
"emotion_path": os.path.join(data_dir, "train", "dialogues_emotion_train.txt"), | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"file_path": os.path.join(data_dir, "test", "dialogues_test.txt"), | |
"act_path": os.path.join(data_dir, "test", "dialogues_act_test.txt"), | |
"emotion_path": os.path.join(data_dir, "test", "dialogues_emotion_test.txt"), | |
"split": "test", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"file_path": os.path.join(data_dir, "validation", "dialogues_validation.txt"), | |
"act_path": os.path.join(data_dir, "validation", "dialogues_act_validation.txt"), | |
"emotion_path": os.path.join(data_dir, "validation", "dialogues_emotion_validation.txt"), | |
"split": "dev", | |
}, | |
), | |
] | |
def _generate_examples(self, file_path, act_path, emotion_path, split): | |
"""Yields examples.""" | |
# Yields (key, example) tuples from the dataset | |
with open(file_path, "r", encoding="utf-8") as f, open(act_path, "r", encoding="utf-8") as act, open( | |
emotion_path, "r", encoding="utf-8" | |
) as emotion: | |
for i, (line_f, line_act, line_emotion) in enumerate(zip(f, act, emotion)): | |
if len(line_f.strip()) == 0: | |
break | |
dialog = line_f.split(self.__EOU__)[:-1] | |
act = line_act.split(" ")[:-1] | |
emotion = line_emotion.split(" ")[:-1] | |
assert len(dialog) == len(act) == len(emotion), "Different turns btw dialogue & emotion & action" | |
yield f"{split}-{i}", { | |
"dialog": dialog, | |
"act": [act_label[x] for x in act], | |
"emotion": [emotion_label[x] for x in emotion], | |
} | |