File size: 8,997 Bytes
85d7559 7998590 85d7559 7998590 85d7559 7998590 85d7559 7998590 85d7559 7998590 85d7559 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
"""
This code is licensed under CC-BY-4.0 from the original work by shunk031.
The code is adapted from https://huggingface.co/datasets/shunk031/JGLUE/blob/main/JGLUE.py
with minor modifications to the code structure.
This codebase provides pre-processing functionality for the MARC-ja dataset in the Japanese GLUE benchmark.
The original code can be found at https://github.com/yahoojapan/JGLUE/blob/main/preprocess/marc-ja/scripts/marc-ja.py.
"""
import random
import warnings
from typing import Dict, List, Optional, Union
import string
import datasets as ds
import pandas as pd
class MarcJaConfig(ds.BuilderConfig):
def __init__(
self,
name: str = "MARC-ja",
is_han_to_zen: bool = False,
max_instance_num: Optional[int] = None,
max_char_length: int = 500,
remove_netural: bool = True,
train_ratio: float = 0.94,
val_ratio: float = 0.03,
test_ratio: float = 0.03,
output_testset: bool = False,
filter_review_id_list_valid: bool = True,
label_conv_review_id_list_valid: bool = True,
version: Optional[Union[ds.utils.Version, str]] = ds.utils.Version("0.0.0"),
data_dir: Optional[str] = None,
data_files: Optional[ds.data_files.DataFilesDict] = None,
description: Optional[str] = None,
) -> None:
super().__init__(
name=name,
version=version,
data_dir=data_dir,
data_files=data_files,
description=description,
)
if train_ratio + val_ratio + test_ratio != 1.0:
raise ValueError(
"train_ratio + val_ratio + test_ratio should be 1.0, "
f"but got {train_ratio} + {val_ratio} + {test_ratio} = {train_ratio + val_ratio + test_ratio}"
)
self.train_ratio = train_ratio
self.val_ratio = val_ratio
self.test_ratio = test_ratio
self.is_han_to_zen = is_han_to_zen
self.max_instance_num = max_instance_num
self.max_char_length = max_char_length
self.remove_netural = remove_netural
self.output_testset = output_testset
self.filter_review_id_list_valid = filter_review_id_list_valid
self.label_conv_review_id_list_valid = label_conv_review_id_list_valid
def get_label(rating: int, remove_netural: bool = False) -> Optional[str]:
if rating >= 4:
return "positive"
elif rating <= 2:
return "negative"
else:
if remove_netural:
return None
else:
return "neutral"
def is_filtered_by_ascii_rate(text: str, threshold: float = 0.9) -> bool:
ascii_letters = set(string.printable)
rate = sum(c in ascii_letters for c in text) / len(text)
return rate >= threshold
def shuffle_dataframe(df: pd.DataFrame) -> pd.DataFrame:
instances = df.to_dict(orient="records")
random.seed(1)
random.shuffle(instances)
return pd.DataFrame(instances)
def get_filter_review_id_list(
filter_review_id_list_paths: Dict[str, str],
) -> Dict[str, List[str]]:
filter_review_id_list_valid = filter_review_id_list_paths.get("valid")
filter_review_id_list_test = filter_review_id_list_paths.get("test")
filter_review_id_list = {}
if filter_review_id_list_valid is not None:
with open(filter_review_id_list_valid, "r") as rf:
filter_review_id_list["valid"] = [line.rstrip() for line in rf]
if filter_review_id_list_test is not None:
with open(filter_review_id_list_test, "r") as rf:
filter_review_id_list["test"] = [line.rstrip() for line in rf]
return filter_review_id_list
def get_label_conv_review_id_list(
label_conv_review_id_list_paths: Dict[str, str],
) -> Dict[str, Dict[str, str]]:
import csv
label_conv_review_id_list_valid = label_conv_review_id_list_paths.get("valid")
label_conv_review_id_list_test = label_conv_review_id_list_paths.get("test")
label_conv_review_id_list: Dict[str, Dict[str, str]] = {}
if label_conv_review_id_list_valid is not None:
with open(label_conv_review_id_list_valid, "r") as rf:
label_conv_review_id_list["valid"] = {row[0]: row[1] for row in csv.reader(rf)}
if label_conv_review_id_list_test is not None:
with open(label_conv_review_id_list_test, "r") as rf:
label_conv_review_id_list["test"] = {row[0]: row[1] for row in csv.reader(rf)}
return label_conv_review_id_list
def output_data(
df: pd.DataFrame,
train_ratio: float,
val_ratio: float,
test_ratio: float,
output_testset: bool,
filter_review_id_list_paths: Dict[str, str],
label_conv_review_id_list_paths: Dict[str, str],
) -> Dict[str, pd.DataFrame]:
instance_num = len(df)
split_dfs: Dict[str, pd.DataFrame] = {}
length1 = int(instance_num * train_ratio)
split_dfs["train"] = df.iloc[:length1]
length2 = int(instance_num * (train_ratio + val_ratio))
split_dfs["valid"] = df.iloc[length1:length2]
split_dfs["test"] = df.iloc[length2:]
filter_review_id_list = get_filter_review_id_list(
filter_review_id_list_paths=filter_review_id_list_paths,
)
label_conv_review_id_list = get_label_conv_review_id_list(
label_conv_review_id_list_paths=label_conv_review_id_list_paths,
)
for eval_type in ("valid", "test"):
if filter_review_id_list.get(eval_type):
df = split_dfs[eval_type]
df = df[~df["review_id"].isin(filter_review_id_list[eval_type])]
split_dfs[eval_type] = df
for eval_type in ("valid", "test"):
if label_conv_review_id_list.get(eval_type):
df = split_dfs[eval_type]
df = df.assign(converted_label=df["review_id"].map(label_conv_review_id_list["valid"]))
df = df.assign(
label=df[["label", "converted_label"]].apply(
lambda xs: xs["label"] if pd.isnull(xs["converted_label"]) else xs["converted_label"],
axis=1,
)
)
df = df.drop(columns=["converted_label"])
split_dfs[eval_type] = df
return {
"train": split_dfs["train"],
"valid": split_dfs["valid"],
}
def preprocess_marc_ja(
config: MarcJaConfig,
data_file_path: str,
filter_review_id_list_paths: Dict[str, str],
label_conv_review_id_list_paths: Dict[str, str],
) -> Dict[str, pd.DataFrame]:
try:
import mojimoji
def han_to_zen(text: str) -> str:
return mojimoji.han_to_zen(text)
except ImportError:
warnings.warn(
"can't import `mojimoji`, failing back to method that do nothing. "
"We recommend running `pip install mojimoji` to reproduce the original preprocessing.",
UserWarning,
)
def han_to_zen(text: str) -> str:
return text
try:
from bs4 import BeautifulSoup
def cleanup_text(text: str) -> str:
return BeautifulSoup(text, "html.parser").get_text()
except ImportError:
warnings.warn(
"can't import `beautifulsoup4`, failing back to method that do nothing."
"We recommend running `pip install beautifulsoup4` to reproduce the original preprocessing.",
UserWarning,
)
def cleanup_text(text: str) -> str:
return text
from tqdm import tqdm
df = pd.read_csv(data_file_path, delimiter="\t")
df = df[["review_body", "star_rating", "review_id"]]
# rename columns
df = df.rename(columns={"review_body": "text", "star_rating": "rating"})
# convert the rating to label
tqdm.pandas(dynamic_ncols=True, desc="Convert the rating to the label")
df = df.assign(label=df["rating"].progress_apply(lambda rating: get_label(rating, config.remove_netural)))
# remove rows where the label is None
df = df[~df["label"].isnull()]
# remove html tags from the text
tqdm.pandas(dynamic_ncols=True, desc="Remove html tags from the text")
df = df.assign(text=df["text"].progress_apply(cleanup_text))
# filter by ascii rate
tqdm.pandas(dynamic_ncols=True, desc="Filter by ascii rate")
df = df[~df["text"].progress_apply(is_filtered_by_ascii_rate)]
if config.max_char_length is not None:
df = df[df["text"].str.len() <= config.max_char_length]
if config.is_han_to_zen:
df = df.assign(text=df["text"].apply(han_to_zen))
df = df[["text", "label", "review_id"]]
df = df.rename(columns={"text": "sentence"})
# shuffle dataset
df = shuffle_dataframe(df)
split_dfs = output_data(
df=df,
train_ratio=config.train_ratio,
val_ratio=config.val_ratio,
test_ratio=config.test_ratio,
output_testset=config.output_testset,
filter_review_id_list_paths=filter_review_id_list_paths,
label_conv_review_id_list_paths=label_conv_review_id_list_paths,
)
return split_dfs
|