|
from __future__ import annotations |
|
|
|
import json |
|
from pathlib import Path |
|
from typing import Generator |
|
|
|
import datasets |
|
|
|
from .base import BaseDatasetProcessor |
|
from .chabsa import ChabsaDatasetProcessor |
|
from .coreference import WikipediaCoreferenceDatasetProcessor |
|
from .dependency import WikipediaDependencyDatasetProcessor |
|
from .jamp import JAMPDatasetProcessor |
|
from .janli import JaNLIDatasetProcessor |
|
from .jcommonsenseqa import JCommonsenseQADatasetProcessor |
|
from .jemhopqa import JEMHopQADatasetProcessor |
|
from .jnli import JNLIDatasetProcessor |
|
from .jsem import JSeMDatasetProcessor |
|
from .jsick import JSICKDatasetProcessor |
|
from .jsquad import JSQuADDatasetProcessor |
|
from .jsts import JSTSDatasetProcessor |
|
from .mawps import MawpsDatasetProcessor |
|
from .ner import WikipediaNERDatasetProcessor |
|
from .niilc import NIILCDatasetProcessor |
|
from .pas import WikipediaPASDatasetProcessor |
|
from .reading import WikipediaReadingDatasetProcessor |
|
from .wiki_base import WikipediaBaseDatasetProcessor |
|
|
|
_CITATION = "" |
|
_DESCRIPTION = "These are datasets including the benchmark 'llm-jp-eval.'" |
|
_HOMEPAGE = "https://github.com/llm-jp/llm-jp-eval/tree/v1.3.0" |
|
_LICENSE = "This work is license under Apache-2.0 license" |
|
_VERSION = datasets.Version("1.3.0") |
|
|
|
|
|
class LlmJpEvalConfig(datasets.BuilderConfig): |
|
def __init__( |
|
self, |
|
name: str = "default", |
|
version: datasets.Version | str | None = _VERSION, |
|
data_dir: str | None = None, |
|
data_files: datasets.data_files.DataFilesDict | None = None, |
|
description: str | None = _DESCRIPTION, |
|
output_dir: str = "./data_llm-jp-eval", |
|
) -> None: |
|
super().__init__( |
|
name=name, |
|
version=version, |
|
data_dir=data_dir, |
|
data_files=data_files, |
|
description=description, |
|
) |
|
self.output_dir = output_dir |
|
|
|
|
|
class LlmJpEval(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [ |
|
LlmJpEvalConfig(name="jamp"), |
|
LlmJpEvalConfig(name="janli"), |
|
LlmJpEvalConfig(name="jnli"), |
|
LlmJpEvalConfig(name="jsem"), |
|
LlmJpEvalConfig(name="jsick"), |
|
LlmJpEvalConfig(name="jemhopqa"), |
|
LlmJpEvalConfig(name="niilc"), |
|
LlmJpEvalConfig(name="jsquad"), |
|
LlmJpEvalConfig(name="jcommonsenseqa"), |
|
LlmJpEvalConfig(name="chabsa"), |
|
LlmJpEvalConfig(name="wiki_reading"), |
|
LlmJpEvalConfig(name="wiki_ner"), |
|
LlmJpEvalConfig(name="wiki_dependency"), |
|
LlmJpEvalConfig(name="wiki_pas"), |
|
LlmJpEvalConfig(name="wiki_coreference"), |
|
LlmJpEvalConfig(name="mawps"), |
|
LlmJpEvalConfig(name="jsts"), |
|
] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
features=datasets.Features( |
|
{ |
|
"input": datasets.Value("string"), |
|
"output": datasets.Value("string"), |
|
} |
|
), |
|
) |
|
|
|
def _split_generators( |
|
self, dl_manager: datasets.DownloadManager |
|
) -> list[datasets.SplitGenerator]: |
|
output_dir = Path(self.config.output_dir) |
|
version_name = self.config.version.version_str |
|
dataset_name = self.config.name |
|
|
|
if dataset_name == "jamp": |
|
processor = JAMPDatasetProcessor |
|
elif dataset_name == "janli": |
|
processor = JaNLIDatasetProcessor |
|
elif dataset_name == "jnli": |
|
processor = JNLIDatasetProcessor |
|
elif dataset_name == "jsem": |
|
processor = JSeMDatasetProcessor |
|
elif dataset_name == "jsick": |
|
processor = JSICKDatasetProcessor |
|
elif dataset_name == "jemhopqa": |
|
processor = JEMHopQADatasetProcessor |
|
elif dataset_name == "niilc": |
|
processor = NIILCDatasetProcessor |
|
elif dataset_name == "jsquad": |
|
processor = JSQuADDatasetProcessor |
|
elif dataset_name == "jcommonsenseqa": |
|
processor = JCommonsenseQADatasetProcessor |
|
elif dataset_name == "chabsa": |
|
processor = ChabsaDatasetProcessor |
|
elif dataset_name == "wiki_reading": |
|
processor = WikipediaReadingDatasetProcessor |
|
elif dataset_name == "wiki_ner": |
|
processor = WikipediaNERDatasetProcessor |
|
elif dataset_name == "wiki_dependency": |
|
processor = WikipediaDependencyDatasetProcessor |
|
elif dataset_name == "wiki_pas": |
|
processor = WikipediaPASDatasetProcessor |
|
elif dataset_name == "wiki_coreference": |
|
processor = WikipediaCoreferenceDatasetProcessor |
|
elif dataset_name == "mawps": |
|
processor = MawpsDatasetProcessor |
|
elif dataset_name == "jsts": |
|
processor = JSTSDatasetProcessor |
|
|
|
processor(output_dir, version_name).pipeline() |
|
|
|
eval_dir = output_dir / version_name / "evaluation" |
|
with (eval_dir / "train" / f"{dataset_name}.json").open(encoding="utf-8") as f: |
|
train_data = json.load(f) |
|
with (eval_dir / "dev" / f"{dataset_name}.json").open(encoding="utf-8") as f: |
|
validation_data = json.load(f) |
|
with (eval_dir / "test" / f"{dataset_name}.json").open(encoding="utf-8") as f: |
|
test_data = json.load(f) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"data": train_data["samples"]} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"data": validation_data["samples"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"data": test_data["samples"]} |
|
), |
|
] |
|
|
|
def _generate_examples(self, data: list[dict[str, str]]) -> Generator: |
|
for i, d in enumerate(data): |
|
yield i, d |
|
|