Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
File size: 2,547 Bytes
6644be4
92de677
6644be4
1ba0ad1
 
92de677
1ba0ad1
 
 
 
 
 
 
 
 
 
 
92de677
1ba0ad1
b93ee96
 
2a0ec82
b93ee96
 
5c3a3c6
 
 
b93ee96
5c3a3c6
 
2a0ec82
5c3a3c6
1ba0ad1
6644be4
6f7a7bd
6644be4
 
 
9569835
 
6644be4
9569835
 
6644be4
9569835
 
6f7a7bd
9569835
6644be4
 
 
 
 
 
 
 
 
b93ee96
 
5c3a3c6
 
b93ee96
 
1ba0ad1
 
 
 
 
 
 
 
e88eeaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
license: apache-2.0
dataset_info:
- config_name: arxiv
  features:
  - name: text
    dtype: string
  splits:
  - name: forget
    num_bytes: 22127152
    num_examples: 500
  - name: approximate
    num_bytes: 371246809
    num_examples: 6155
  - name: retain
    num_bytes: 84373706
    num_examples: 2000
  download_size: 216767075
  dataset_size: 477747667
- config_name: general
  features:
  - name: text
    dtype: string
  splits:
  - name: evaluation
    num_bytes: 4628036
    num_examples: 1000
  - name: retain
    num_bytes: 24472399
    num_examples: 5000
  download_size: 17206310
  dataset_size: 29100435
- config_name: github
  features:
  - name: text
    dtype: string
  splits:
  - name: forget
    num_bytes: 14069535
    num_examples: 2000
  - name: approximate
    num_bytes: 82904771
    num_examples: 15815
  - name: retain
    num_bytes: 28749659
    num_examples: 4000
  download_size: 43282163
  dataset_size: 125723965
configs:
- config_name: arxiv
  data_files:
  - split: forget
    path: arxiv/forget-*
  - split: approximate
    path: arxiv/approximate-*
  - split: retain
    path: arxiv/retain-*
- config_name: general
  data_files:
  - split: evaluation
    path: general/evaluation-*
  - split: retain
    path: general/retain-*
- config_name: github
  data_files:
  - split: forget
    path: github/forget-*
  - split: approximate
    path: github/approximate-*
  - split: retain
    path: github/retain-*
---

# 📖 unlearn_dataset
The unlearn_dataset serves as a benchmark for evaluating unlearning methodologies in pre-trained large language models across diverse domains, including arXiv, GitHub. 

## 🔍 Loading the datasets

To load the dataset:

```python
from datasets import load_dataset

dataset = load_dataset("llmunlearn/unlearn_dataset", name="arxiv", split="forget")
```
* Available configuration names and corresponding splits:
  - `arxiv`: `forget, approximate, retain`
  - `github`: `forget, approximate, retain`
  - `general`: `evaluation, retain`


## 🛠️ Codebase

For evaluating unlearning methods on our datasets, visit our [GitHub repository](https://github.com/yaojin17/Unlearning_LLM).



## ⭐ Citing our Work

If you find our codebase or dataset useful, please consider citing our paper:

```bib
@article{yao2024machine,
  title={Machine Unlearning of Pre-trained Large Language Models},
  author={Yao, Jin and Chien, Eli and Du, Minxin and Niu, Xinyao and Wang, Tianhao and Cheng, Zezhou and Yue, Xiang},
  journal={arXiv preprint arXiv:2402.15159},
  year={2024}
}
```