--- license: apache-2.0 dataset_info: - config_name: arxiv features: - name: text dtype: string splits: - name: forget num_bytes: 22127152 num_examples: 500 - name: approximate num_bytes: 371246809 num_examples: 6155 - name: retain num_bytes: 84373706 num_examples: 2000 download_size: 216767075 dataset_size: 477747667 - config_name: general features: - name: content dtype: string splits: - name: evaluation num_bytes: 4628036 num_examples: 1000 - name: retain num_bytes: 24472399 num_examples: 5000 download_size: 17206382 dataset_size: 29100435 - config_name: github features: - name: content dtype: string splits: - name: forget num_bytes: 14069535 num_examples: 2000 - name: approximate num_bytes: 82904771 num_examples: 15815 - name: retain num_bytes: 28749659 num_examples: 4000 download_size: 43282349 dataset_size: 125723965 configs: - config_name: arxiv data_files: - split: forget path: arxiv/forget-* - split: approximate path: arxiv/approximate-* - split: retain path: arxiv/retain-* - config_name: general data_files: - split: evaluation path: general/evaluation-* - split: retain path: general/retain-* - config_name: github data_files: - split: forget path: github/forget-* - split: approximate path: github/approximate-* - split: retain path: github/retain-* --- # 📖 unlearn_dataset The unlearn_dataset serves as a benchmark for evaluating unlearning methodologies in pre-trained large language models across diverse domains, including arXiv, GitHub. ## 🔍 Loading the datasets To load the dataset: ```python from datasets import load_dataset dataset = load_dataset("llmunlearn/unlearn_dataset", name="arxiv", split="forget") ``` * Available configuration names and corresponding splits: - `arxiv`: `forget, approximate, retain` - `github`: `forget, approximate, retain` - `general`: `evaluation, retain` ## 🛠️ Codebase For evaluating unlearning methods on our datasets, visit our [GitHub repository](https://github.com/yaojin17/Unlearning_LLM). ## ⭐ Citing our Work If you find our codebase or dataset useful, please consider citing our paper: ```bib @article{yao2024machine, title={Machine Unlearning of Pre-trained Large Language Models}, author={Yao, Jin and Chien, Eli and Du, Minxin and Niu, Xinyao and Wang, Tianhao and Cheng, Zezhou and Yue, Xiang}, journal={arXiv preprint arXiv:2402.15159}, year={2024} } ```