Datasets:
lmqg
/

Modalities:
Tabular
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 4,064 Bytes
3085290
 
 
 
4cf327a
ccb88a4
5362bd4
 
 
 
 
 
 
 
 
 
 
ccb88a4
3085290
4cf327a
3085290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccb88a4
 
3085290
a34d09d
3085290
 
 
 
4cf327a
3085290
 
 
 
 
 
 
 
22d4f68
 
3085290
 
 
 
 
 
 
ccb88a4
5683f74
 
 
 
 
 
 
be20096
 
 
5683f74
3085290
 
 
5683f74
3085290
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import json
import datasets

logger = datasets.logging.get_logger(__name__)
_VERSION = "5.0.1"
_CITATION = """
@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
"""
_DESCRIPTION = """[SubjQA](https://github.com/megagonlabs/SubjQA) dataset for question generation (QG) task."""
_URL = 'https://huggingface.co/datasets/lmqg/qg_subjqa/resolve/main/data/processed'
_DOMAINS = ["books", "electronics", "grocery", "movies", "restaurants", "tripadvisor"]


class QGSubjQAConfig(datasets.BuilderConfig):
    """BuilderConfig for SquadQG"""

    def __init__(self, **kwargs):
        """BuilderConfig for SquadQG.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(QGSubjQAConfig, self).__init__(**kwargs)


class QGSubjQA(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = [QGSubjQAConfig(name="all", version=datasets.Version(_VERSION), description="SubjQA from all domain of `{}`.")]
    BUILDER_CONFIGS += [QGSubjQAConfig(name=i, version=datasets.Version(_VERSION), description=f"SubjQA from domain of `{i}`.") for i in _DOMAINS]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "answer": datasets.Value("string"), "paragraph_question": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "sentence": datasets.Value("string"),
                    "paragraph": datasets.Value("string"),
                    "sentence_answer": datasets.Value("string"),
                    "paragraph_answer": datasets.Value("string"),
                    "paragraph_sentence": datasets.Value("string"),
                    "paragraph_id": datasets.Value("string"),
                    "question_subj_level": datasets.Value("int32"),
                    "answer_subj_level": datasets.Value("int32"),
                    "domain": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
            homepage="https://github.com/asahi417/lm-question-generation"
        )

    def _split_generators(self, dl_manager):
        if self.config.name == 'all':
            downloaded_file = dl_manager.download_and_extract({
                'train': [f"{_URL}/{i}.train.jsonl" for i in _DOMAINS],
                'dev': [f"{_URL}/{i}.dev.jsonl" for i in _DOMAINS],
                'test': [f"{_URL}/{i}.test.jsonl" for i in _DOMAINS]
            })
        else:
            downloaded_file = dl_manager.download_and_extract({
                'train': [f"{_URL}/{self.config.name}.train.jsonl"],
                'dev': [f"{_URL}/{self.config.name}.dev.jsonl"],
                'test': [f"{_URL}/{self.config.name}.test.jsonl"]
            })
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": downloaded_file["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": downloaded_file["dev"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": downloaded_file["test"]})
        ]

    def _generate_examples(self, filepaths):
        _key = 0
        for filepath in filepaths:
            logger.info("generating examples from = %s", filepath)
            with open(filepath, encoding="utf-8") as f:
                _list = f.read().split('\n')
                if _list[-1] == '':
                    _list = _list[:-1]
                for i in _list:
                    data = json.loads(i)
                    yield _key, data
                    _key += 1