---
# pretty_name: "" # Example: "MS MARCO Terrier Index"
tags:
- pyterrier
- pyterrier-artifact
- pyterrier-artifact.sparse_index
- pyterrier-artifact.sparse_index.anserini
task_categories:
- text-retrieval
viewer: false
---
# MS MARCO Anserini Index
## Description
This is an index of the MS MARCO passage (v1) dataset with Anserini. It can be used for passage retrieval using lexical methods.
## Usage
```python
>>> from pyterrier_anserini import AnseriniIndex
>>> index = AnseriniIndex.from_hf('macavaney/msmarco-passage.anserini')
>>> bm25 = index.bm25(include_fields=['contents'])
>>> bm25.search('terrier breeds')
qid query docno score rank contents
0 1 terrier breeds 5785957 11.9588 0 The Jack Russell Terrier and the Russell ...
1 1 terrier breeds 7455374 11.9343 1 FCI, ANKC, and IKC recognize the shorts a...
2 1 terrier breeds 1406578 11.8640 2 Norfolk terrier (English breed of small t...
3 1 terrier breeds 3984886 11.7518 3 Terrier Group is the name of a breed Grou...
4 1 terrier breeds 7728131 11.5660 4 The Yorkshire Terrier didn't begin as the...
...
```
## Benchmarks
**TREC DL 2019**
Code
```python
from ir_measures import nDCG, RR, MAP, R
import pyterrier as pt
from pyterrier_anserini import AnseriniIndex
index = AnseriniIndex.from_hf('macavaney/msmarco-passage.anserini')
dataset = pt.get_dataset('irds:msmarco-passage/trec-dl-2019/judged')
pt.Experiment(
[index.bm25(), index.qld(), index.tfidf()],
dataset.get_topics(),
dataset.get_qrels(),
[nDCG@10, nDCG, RR(rel=2), MAP(rel=2), R(rel=2)@1000],
['BM25', 'QLD', 'TF-IDF'],
round=4,
)
```
| | name | nDCG@10 | nDCG | RR(rel=2) | AP(rel=2) | R(rel=2)@1000 |
|---:|:-------|----------:|-------:|------------:|------------:|----------------:|
| 0 | BM25 | 0.5121 | 0.61 | 0.715 | 0.3069 | 0.7529 |
| 1 | QLD | 0.4689 | 0.5995 | 0.606 | 0.3014 | 0.7662 |
| 2 | TF-IDF | 0.3742 | 0.5083 | 0.5203 | 0.2012 | 0.7016 |
**TREC DL 2020**
Code
```python
from ir_measures import nDCG, RR, MAP, R
import pyterrier as pt
from pyterrier_anserini import AnseriniIndex
index = AnseriniIndex.from_hf('macavaney/msmarco-passage.anserini')
dataset = pt.get_dataset('irds:msmarco-passage/trec-dl-2020/judged')
pt.Experiment(
[index.bm25(), index.qld(), index.tfidf()],
dataset.get_topics(),
dataset.get_qrels(),
[nDCG@10, nDCG, RR(rel=2), MAP(rel=2), R(rel=2)@1000],
['BM25', 'QLD', 'TF-IDF'],
round=4,
)
```
| | name | nDCG@10 | nDCG | RR(rel=2) | AP(rel=2) | R(rel=2)@1000 |
|---:|:-------|----------:|-------:|------------:|------------:|----------------:|
| 0 | BM25 | 0.4769 | 0.5832 | 0.672 | 0.2827 | 0.7865 |
| 1 | QLD | 0.4584 | 0.5872 | 0.6238 | 0.2811 | 0.8179 |
| 2 | TF-IDF | 0.4029 | 0.5039 | 0.5526 | 0.2107 | 0.7323 |
**MS MARCO Dev (small)**
Code
```python
from ir_measures import RR, R
import pyterrier as pt
from pyterrier_anserini import AnseriniIndex
index = AnseriniIndex.from_hf('macavaney/msmarco-passage.anserini')
dataset = pt.get_dataset('irds:msmarco-passage/dev/small')
pt.Experiment(
[index.bm25(), index.qld(), index.tfidf()],
dataset.get_topics(),
dataset.get_qrels(),
[RR@10, R@1000],
['BM25', 'QLD', 'TF-IDF'],
round=4,
)
```
| | name | RR@10 | R@1000 |
|---:|:-------|--------:|---------:|
| 0 | BM25 | 0.1844 | 0.8567 |
| 1 | QLD | 0.1664 | 0.8508 |
| 2 | TF-IDF | 0.1368 | 0.8288 |
## Reproduction
```python
>>> import pyterrier as pt
>>> import pyterrier_anserini
>>> idx = pyterrier_anserini.AnseriniIndex('msmarco-passage.anserini')
>>> idx.indexer().index(pt.get_dataset('irds:msmarco-passage').get_corpus_iter())
```
## Metadata
```
{
"type": "sparse_index",
"format": "anserini",
"package_hint": "pyterrier-anserini"
}
```