Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SparseCraft
|
2 |
+
|
3 |
+
## [ECCV'24] SparseCraft: Few-Shot Neural Reconstruction through Stereopsis Guided Geometric Linearization
|
4 |
+
## [Project](https://sparsecraft.github.io/) | [Paper](https://arxiv.org/abs/2407.14257) | [Code](https://github.com/maeyounes/SparseCraft)
|
5 |
+
### DTU Dataset
|
6 |
+
We provide preprocessed DTU data and results for the tasks of novel view synthesis and surface reconstruction.
|
7 |
+
|
8 |
+
It contains the following directories:
|
9 |
+
|
10 |
+
```
|
11 |
+
sparsecraft_data
|
12 |
+
├── nvs # Novel View Synthesis task data and results
|
13 |
+
│ └── mvs_data
|
14 |
+
│ ├── scan103
|
15 |
+
│ ├── ...
|
16 |
+
│ └── results # Results for training using 3, 6, and 9 views
|
17 |
+
│ ├── 3v
|
18 |
+
│ │ ├── scan103
|
19 |
+
│ │ ├── ...
|
20 |
+
│ ├── 6v
|
21 |
+
│ │ ├── scan103
|
22 |
+
│ │ ├── ...
|
23 |
+
│ └── 9v
|
24 |
+
│ ├── scan103
|
25 |
+
│ ├── ...
|
26 |
+
└── reconstruction # Surface Reconstruction task data and results
|
27 |
+
└── mvs_data # Surface reconstruction data uses a different set of scans and views than the novel view synthesis task
|
28 |
+
├── set0
|
29 |
+
│ ├── scan105
|
30 |
+
│ ├── ...
|
31 |
+
└── set1
|
32 |
+
├── scan105
|
33 |
+
├── ...
|
34 |
+
└── results
|
35 |
+
├── set0
|
36 |
+
│ ├── scan105
|
37 |
+
│ ├── ...
|
38 |
+
└── set1
|
39 |
+
├── scan105
|
40 |
+
```
|
41 |
+
|
42 |
+
**Note**
|
43 |
+
|
44 |
+
The DTU dataset was preprocessed as follows:
|
45 |
+
- The original data is from the [NeuS Project](https://github.com/Totoro97/NeuS). We use the same camera poses and intrinsics as the original data.
|
46 |
+
- To obtain MVS data, we used the [Colmap](https://colmap.github.io/) initialized with the original camera poses and intrinsics.
|
47 |
+
- We provide a script that achieves this in `scripts` that you can run using the following command. Note that you will need to have Colmap installed on your machine:
|