File size: 31,109 Bytes
8537242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9843332
8537242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f45cb5a
8537242
f45cb5a
8537242
 
 
f45cb5a
8537242
 
 
 
 
f45cb5a
8537242
 
 
 
 
 
 
 
 
 
 
 
f45cb5a
8537242
925a8f8
8537242
 
 
 
 
 
 
f45cb5a
8537242
 
 
 
9843332
e18a102
8537242
 
 
 
 
 
 
9843332
 
8537242
 
9843332
 
8537242
 
 
 
 
 
 
 
 
 
 
 
 
0db3f6c
8537242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0db3f6c
 
 
e18a102
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
---
annotations_creators:
  mlqa:
  - crowdsourced
  nc:
  - machine-generated
  ner:
  - expert-generated
  - found
  ntg:
  - machine-generated
  paws-x:
  - expert-generated
  pos:
  - expert-generated
  - found
  qadsm:
  - machine-generated
  qam:
  - machine-generated
  qg:
  - machine-generated
  wpr:
  - machine-generated
  xnli:
  - machine-generated
language_creators:
  mlqa:
  - found
  nc:
  - found
  ner:
  - crowdsourced
  - expert-generated
  ntg:
  - machine-generated
  paws-x:
  - expert-generated
  pos:
  - crowdsourced
  - expert-generated
  qadsm:
  - found
  qam:
  - found
  qg:
  - machine-generated
  wpr:
  - found
  xnli:
  - crowdsourced
  - expert-generated
languages:
  mlqa:
  - ar
  - de
  - en
  - es
  - hi
  - vi
  - zh
  nc:
  - en
  - de
  - es
  - fr
  - ru
  ner:
  - de
  - en
  - es
  - nl
  ntg:
  - en
  - de
  - es
  - fr
  - ru
  paws-x:
  - en
  - de
  - es
  - fr
  pos:
  - ar
  - bg
  - de
  - el
  - en
  - es
  - fr
  - hi
  - it
  - nl
  - pl
  - ru
  - th
  - tr
  - ur
  - vi
  - zh
  qadsm:
  - en
  - de
  - fr
  qam:
  - en
  - de
  - fr
  qg:
  - en
  - de
  - fr
  - pt
  - it
  - zh
  wpr:
  - en
  - de
  - fr
  - es
  - it
  - pt
  - zh
  xnli:
  - ar
  - bg
  - de
  - el
  - en
  - es
  - fr
  - hi
  - ru
  - sw
  - th
  - tr
  - ur
  - vi
  - zh
licenses:
  mlqa:
  - cc-by-sa-4-0
  nc:
  - unknown
  ner:
  - unknown
  ntg:
  - unknown
  paws-x:
  - unknown
  pos:
  - other-Licence Universal Dependencies v2-5
  qadsm:
  - unknown
  qam:
  - unknown
  qg:
  - unknown
  wpr:
  - unknown
  xnli:
  - cc-by-nc-4-0
multilinguality:
  mlqa:
  - multilingual
  nc:
  - multilingual
  ner:
  - multilingual
  ntg:
  - multilingual
  paws-x:
  - multilingual
  pos:
  - multilingual
  qadsm:
  - multilingual
  qam:
  - multilingual
  qg:
  - multilingual
  wpr:
  - multilingual
  xnli:
  - multilingual
  - translation
size_categories:
  mlqa:
  - 100K<n<1M
  nc:
  - 100K<n<1M
  ner:
  - 10K<n<100K
  ntg:
  - 100K<n<1M
  paws-x:
  - 10K<n<100K
  pos:
  - 10K<n<100K
  qadsm:
  - 100K<n<1M
  qam:
  - 100K<n<1M
  qg:
  - 100K<n<1M
  wpr:
  - 100K<n<1M
  xnli:
  - 100K<n<1M
source_datasets:
  mlqa:
  - extended|squad
  nc:
  - original
  ner:
  - extended|conll2003
  ntg:
  - original
  paws-x:
  - original
  pos:
  - original
  qadsm:
  - original
  qam:
  - original
  qg:
  - original
  wpr:
  - original
  xnli:
  - extended|xnli
task_categories:
  mlqa:
  - question-answering
  nc:
  - text-classification
  ner:
  - token-classification
  ntg:
  - summarization
  paws-x:
  - text-classification
  pos:
  - token-classification
  qadsm:
  - text-classification
  qam:
  - text-classification
  qg:
  - text2text-generation
  wpr:
  - text-classification
  xnli:
  - text-classification
task_ids:
  mlqa:
  - extractive-qa
  - open-domain-qa
  nc:
  - topic-classification
  ner:
  - named-entity-recognition
  ntg: []
  paws-x:
  - text-classification-other-paraphrase-identification
  pos:
  - parsing
  qadsm:
  - acceptability-classification
  qam:
  - acceptability-classification
  qg:
  - text2text-generation-other-question-answering
  wpr:
  - acceptability-classification
  xnli:
  - natural-language-inference
paperswithcode_id: null
pretty_name: XGLUE
---

# Dataset Card for XGLUE

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [XGLUE homepage](https://microsoft.github.io/XGLUE/)
- **Paper:** [XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training, Understanding and Generation](https://arxiv.org/abs/1907.09190)

### Dataset Summary

XGLUE is a new benchmark dataset to evaluate the performance of cross-lingual pre-trained models with respect to cross-lingual natural language understanding and generation. 

The training data of each task is in English while the validation and test data is present in multiple different languages.
The following table shows which languages are present as validation and test data for each config.

![Available Languages for Test and Validation Data](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/xglue_langs.png)

Therefore, for each config, a cross-lingual pre-trained model should be fine-tuned on the English training data, and evaluated on for all languages.

### Leaderboards

The XGLUE leaderboard can be found on the [homepage](https://microsoft.github.io/XGLUE/) and 
consits of a XGLUE-Understanding Score (the average of the tasks `ner`, `pos`, `mlqa`, `nc`, `xnli`, `paws-x`, `qadsm`, `wpr`, `qam`) and a XGLUE-Generation Score (the average of the tasks `qg`, `ntg`).

## Dataset Structure

### Data Instances

#### ner

An example of 'test.nl' looks as follows.

```
{
  "ner": [
    "O",
    "O",
    "O",
    "B-LOC",
    "O",
    "B-LOC",
    "O",
    "B-LOC",
    "O",
    "O",
    "O",
    "O",
    "O",
    "O",
    "O",
    "B-PER",
    "I-PER",
    "O",
    "O",
    "B-LOC",
    "O",
    "O"
  ],
  "words": [
    "Dat",
    "is",
    "in",
    "Itali\u00eb",
    ",",
    "Spanje",
    "of",
    "Engeland",
    "misschien",
    "geen",
    "probleem",
    ",",
    "maar",
    "volgens",
    "'",
    "Der",
    "Kaiser",
    "'",
    "in",
    "Duitsland",
    "wel",
    "."
  ]
}
```

#### pos

An example of 'test.fr' looks as follows.

```
{
  "pos": [
    "PRON",
    "VERB",
    "SCONJ",
    "ADP",
    "PRON",
    "CCONJ",
    "DET",
    "NOUN",
    "ADP",
    "NOUN",
    "CCONJ",
    "NOUN",
    "ADJ",
    "PRON",
    "PRON",
    "AUX",
    "ADV",
    "VERB",
    "PUNCT",
    "PRON",
    "VERB",
    "VERB",
    "DET",
    "ADJ",
    "NOUN",
    "ADP",
    "DET",
    "NOUN",
    "PUNCT"
  ],
  "words": [
    "Je",
    "sens",
    "qu'",
    "entre",
    "\u00e7a",
    "et",
    "les",
    "films",
    "de",
    "m\u00e9decins",
    "et",
    "scientifiques",
    "fous",
    "que",
    "nous",
    "avons",
    "d\u00e9j\u00e0",
    "vus",
    ",",
    "nous",
    "pourrions",
    "emprunter",
    "un",
    "autre",
    "chemin",
    "pour",
    "l'",
    "origine",
    "."
  ]
}
```

#### mlqa

An example of 'test.hi' looks as follows.

```
{
  "answers": {
    "answer_start": [
      378
    ],
    "text": [
      "\u0909\u0924\u094d\u0924\u0930 \u092a\u0942\u0930\u094d\u0935"
    ]
  },
  "context": "\u0909\u0938\u0940 \"\u090f\u0930\u093f\u092f\u093e XX \" \u0928\u093e\u092e\u0915\u0930\u0923 \u092a\u094d\u0930\u0923\u093e\u0932\u0940 \u0915\u093e \u092a\u094d\u0930\u092f\u094b\u0917 \u0928\u0947\u0935\u093e\u0926\u093e \u092a\u0930\u0940\u0915\u094d\u0937\u0923 \u0938\u094d\u0925\u0932 \u0915\u0947 \u0905\u0928\u094d\u092f \u092d\u093e\u0917\u094b\u0902 \u0915\u0947 \u0932\u093f\u090f \u0915\u093f\u092f\u093e \u0917\u092f\u093e \u0939\u0948\u0964\u092e\u0942\u0932 \u0930\u0942\u092a \u092e\u0947\u0902 6 \u092c\u091f\u0947 10 \u092e\u0940\u0932 \u0915\u093e \u092f\u0939 \u0906\u092f\u0924\u093e\u0915\u093e\u0930 \u0905\u0921\u094d\u0921\u093e \u0905\u092c \u0924\u0925\u093e\u0915\u0925\u093f\u0924 '\u0917\u094d\u0930\u0942\u092e \u092c\u0949\u0915\u094d\u0938 \" \u0915\u093e \u090f\u0915 \u092d\u093e\u0917 \u0939\u0948, \u091c\u094b \u0915\u093f 23 \u092c\u091f\u0947 25.3 \u092e\u0940\u0932 \u0915\u093e \u090f\u0915 \u092a\u094d\u0930\u0924\u093f\u092c\u0902\u0927\u093f\u0924 \u0939\u0935\u093e\u0908 \u0915\u094d\u0937\u0947\u0924\u094d\u0930 \u0939\u0948\u0964 \u092f\u0939 \u0915\u094d\u0937\u0947\u0924\u094d\u0930 NTS \u0915\u0947 \u0906\u0902\u0924\u0930\u093f\u0915 \u0938\u0921\u093c\u0915 \u092a\u094d\u0930\u092c\u0902\u0927\u0928 \u0938\u0947 \u091c\u0941\u0921\u093c\u093e \u0939\u0948, \u091c\u093f\u0938\u0915\u0940 \u092a\u0915\u094d\u0915\u0940 \u0938\u0921\u093c\u0915\u0947\u0902 \u0926\u0915\u094d\u0937\u093f\u0923 \u092e\u0947\u0902 \u092e\u0930\u0915\u0930\u0940 \u0915\u0940 \u0913\u0930 \u0914\u0930 \u092a\u0936\u094d\u091a\u093f\u092e \u092e\u0947\u0902 \u092f\u0941\u0915\u094d\u0915\u093e \u092b\u094d\u0932\u0948\u091f \u0915\u0940 \u0913\u0930 \u091c\u093e\u0924\u0940 \u0939\u0948\u0902\u0964 \u091d\u0940\u0932 \u0938\u0947 \u0909\u0924\u094d\u0924\u0930 \u092a\u0942\u0930\u094d\u0935 \u0915\u0940 \u0913\u0930 \u092c\u0922\u093c\u0924\u0947 \u0939\u0941\u090f \u0935\u094d\u092f\u093e\u092a\u0915 \u0914\u0930 \u0914\u0930 \u0938\u0941\u0935\u094d\u092f\u0935\u0938\u094d\u0925\u093f\u0924 \u0917\u094d\u0930\u0942\u092e \u091d\u0940\u0932 \u0915\u0940 \u0938\u0921\u093c\u0915\u0947\u0902 \u090f\u0915 \u0926\u0930\u094d\u0930\u0947 \u0915\u0947 \u091c\u0930\u093f\u092f\u0947 \u092a\u0947\u091a\u0940\u0926\u093e \u092a\u0939\u093e\u0921\u093c\u093f\u092f\u094b\u0902 \u0938\u0947 \u0939\u094b\u0915\u0930 \u0917\u0941\u091c\u0930\u0924\u0940 \u0939\u0948\u0902\u0964 \u092a\u0939\u0932\u0947 \u0938\u0921\u093c\u0915\u0947\u0902 \u0917\u094d\u0930\u0942\u092e \u0918\u093e\u091f\u0940",
  "question": "\u091d\u0940\u0932 \u0915\u0947 \u0938\u093e\u092a\u0947\u0915\u094d\u0937 \u0917\u094d\u0930\u0942\u092e \u0932\u0947\u0915 \u0930\u094b\u0921 \u0915\u0939\u093e\u0901 \u091c\u093e\u0924\u0940 \u0925\u0940?"
}
```

#### nc

An example of 'test.es' looks as follows.

```
{
  "news_body": "El bizcocho es seguramente el producto m\u00e1s b\u00e1sico y sencillo de toda la reposter\u00eda : consiste en poco m\u00e1s que mezclar unos cuantos ingredientes, meterlos al horno y esperar a que se hagan. Por obra y gracia del impulsor qu\u00edmico, tambi\u00e9n conocido como \"levadura de tipo Royal\", despu\u00e9s de un rato de calorcito esta combinaci\u00f3n de harina, az\u00facar, huevo, grasa -aceite o mantequilla- y l\u00e1cteo se transforma en uno de los productos m\u00e1s deliciosos que existen para desayunar o merendar . Por muy manazas que seas, es m\u00e1s que probable que tu bizcocho casero supere en calidad a cualquier infamia industrial envasada. Para lograr un bizcocho digno de admiraci\u00f3n s\u00f3lo tienes que respetar unas pocas normas que afectan a los ingredientes, proporciones, mezclado, horneado y desmoldado. Todas las tienes resumidas en unos dos minutos el v\u00eddeo de arriba, en el que adem \u00e1s aprender\u00e1s alg\u00fan truquillo para que tu bizcochaco quede m\u00e1s fino, jugoso, esponjoso y amoroso. M\u00e1s en MSN:",
  "news_category": "foodanddrink",
  "news_title": "Cocina para lerdos: las leyes del bizcocho"
}
```

#### xnli

An example of 'validation.th' looks as follows.

```
{
  "hypothesis": "\u0e40\u0e02\u0e32\u0e42\u0e17\u0e23\u0e2b\u0e32\u0e40\u0e40\u0e21\u0e48\u0e02\u0e2d\u0e07\u0e40\u0e02\u0e32\u0e2d\u0e22\u0e48\u0e32\u0e07\u0e23\u0e27\u0e14\u0e40\u0e23\u0e47\u0e27\u0e2b\u0e25\u0e31\u0e07\u0e08\u0e32\u0e01\u0e17\u0e35\u0e48\u0e23\u0e16\u0e42\u0e23\u0e07\u0e40\u0e23\u0e35\u0e22\u0e19\u0e2a\u0e48\u0e07\u0e40\u0e02\u0e32\u0e40\u0e40\u0e25\u0e49\u0e27",
  "label": 1,
  "premise": "\u0e41\u0e25\u0e30\u0e40\u0e02\u0e32\u0e1e\u0e39\u0e14\u0e27\u0e48\u0e32, \u0e21\u0e48\u0e32\u0e21\u0e4a\u0e32 \u0e1c\u0e21\u0e2d\u0e22\u0e39\u0e48\u0e1a\u0e49\u0e32\u0e19"
}
```

#### paws-x

An example of 'test.es' looks as follows.

```
{
  "label": 1,
  "sentence1": "La excepci\u00f3n fue entre fines de 2005 y 2009 cuando jug\u00f3 en Suecia con Carlstad United BK, Serbia con FK Borac \u010ca\u010dak y el FC Terek Grozny de Rusia.",
  "sentence2": "La excepci\u00f3n se dio entre fines del 2005 y 2009, cuando jug\u00f3 con Suecia en el Carlstad United BK, Serbia con el FK Borac \u010ca\u010dak y el FC Terek Grozny de Rusia."
}
```

#### qadsm

An example of 'train' looks as follows.

```
{
  "ad_description": "Your New England Cruise Awaits! Holland America Line Official Site.",
  "ad_title": "New England Cruises",
  "query": "cruise portland maine",
  "relevance_label": 1
}
```

#### wpr

An example of 'test.zh' looks as follows.

```
{
  "query": "maxpro\u5b98\u7f51",
  "relavance_label": 0,
  "web_page_snippet": "\u5728\u7ebf\u8d2d\u4e70\uff0c\u552e\u540e\u670d\u52a1\u3002vivo\u667a\u80fd\u624b\u673a\u5f53\u5b63\u660e\u661f\u673a\u578b\u6709NEX\uff0cvivo X21\uff0cvivo X20\uff0c\uff0cvivo X23\u7b49\uff0c\u5728vivo\u5b98\u7f51\u8d2d\u4e70\u624b\u673a\u53ef\u4ee5\u4eab\u53d712 \u671f\u514d\u606f\u4ed8\u6b3e\u3002 \u54c1\u724c Funtouch OS \u4f53\u9a8c\u5e97 | ...",
  "wed_page_title": "vivo\u667a\u80fd\u624b\u673a\u5b98\u65b9\u7f51\u7ad9-AI\u975e\u51e1\u6444\u5f71X23"
}
```

#### qam

An example of 'validation.en' looks as follows.

```
{
  "annswer": "Erikson has stated that after the last novel of the Malazan Book of the Fallen was finished, he and Esslemont would write a comprehensive guide tentatively named The Encyclopaedia Malazica.",
  "label": 0,
  "question": "main character of malazan book of the fallen"
}
```

#### qg

An example of 'test.de' looks as follows.

```
{
  "answer_passage": "Medien bei WhatsApp automatisch speichern. Tippen Sie oben rechts unter WhatsApp auf die drei Punkte oder auf die Men\u00fc-Taste Ihres Smartphones. Dort wechseln Sie in die \"Einstellungen\" und von hier aus weiter zu den \"Chat-Einstellungen\". Unter dem Punkt \"Medien Auto-Download\" k\u00f6nnen Sie festlegen, wann die WhatsApp-Bilder heruntergeladen werden sollen.",
  "question": "speichenn von whats app bilder unterbinden"
}
```

#### ntg

An example of 'test.en' looks as follows.

```
{
  "news_body": "Check out this vintage Willys Pickup! As they say, the devil is in the details, and it's not every day you see such attention paid to every last area of a restoration like with this 1961 Willys Pickup . Already the Pickup has a unique look that shares some styling with the Jeep, plus some original touches you don't get anywhere else. It's a classy way to show up to any event, all thanks to Hollywood Motors . A burgundy paint job contrasts with white lower panels and the roof. Plenty of tasteful chrome details grace the exterior, including the bumpers, headlight bezels, crossmembers on the grille, hood latches, taillight bezels, exhaust finisher, tailgate hinges, etc. Steel wheels painted white and chrome hubs are a tasteful addition. Beautiful oak side steps and bed strips add a touch of craftsmanship to this ride. This truck is of real showroom quality, thanks to the astoundingly detailed restoration work performed on it, making this Willys Pickup a fierce contender for best of show. Under that beautiful hood is a 225 Buick V6 engine mated to a three-speed manual transmission, so you enjoy an ideal level of control. Four wheel drive is functional, making it that much more utilitarian and downright cool. The tires are new, so you can enjoy a lot of life out of them, while the wheels and hubs are in great condition. Just in case, a fifth wheel with a tire and a side mount are included. Just as important, this Pickup runs smoothly, so you can go cruising or even hit the open road if you're interested in participating in some classic rallies. You might associate Willys with the famous Jeep CJ, but the automaker did produce a fair amount of trucks. The Pickup is quite the unique example, thanks to distinct styling that really turns heads, making it a favorite at quite a few shows. Source: Hollywood Motors Check These Rides Out Too: Fear No Trails With These Off-Roaders 1965 Pontiac GTO: American Icon For Sale In Canada Low-Mileage 1955 Chevy 3100 Represents Turn In Pickup Market",
  "news_title": "This 1961 Willys Pickup Will Let You Cruise In Style"
}
```

### Data Fields

#### ner

In the following each data field in ner is explained. The data fields are the same among all splits.

- `words`: a list of words composing the sentence.
- `ner`: a list of entitity classes corresponding to each word respectively.


#### pos

In the following each data field in pos is explained. The data fields are the same among all splits.

- `words`: a list of words composing the sentence.
- `pos`: a list of "part-of-speech" classes corresponding to each word respectively.


#### mlqa

In the following each data field in mlqa is explained. The data fields are the same among all splits.

- `context`: a string, the context containing the answer.
- `question`: a string, the question to be answered.
- `answers`: a string, the answer to `question`.


#### nc

In the following each data field in nc is explained. The data fields are the same among all splits.

- `news_title`: a string, to the title of the news report.
- `news_body`: a string, to the actual news report.
- `news_category`: a string, the category of the news report, *e.g.* `foodanddrink`


#### xnli

In the following each data field in xnli is explained. The data fields are the same among all splits.

- `premise`: a string, the context/premise, *i.e.* the first sentence for natural language inference.
- `hypothesis`: a string, a sentence whereas its relation to `premise` is to be classified, *i.e.* the second sentence for natural language inference.
- `label`: a class catory (int), natural language inference relation class between `hypothesis` and `premise`. One of 0: entailment, 1: contradiction, 2: neutral.


#### paws-x

In the following each data field in paws-x is explained. The data fields are the same among all splits.

- `sentence1`: a string, a sentence.
- `sentence2`: a string, a sentence whereas the sentence is either a paraphrase of `sentence1` or not.
- `label`: a class label (int), whether `sentence2` is a paraphrase of `sentence1` One of 0: different, 1: same.


#### qadsm

In the following each data field in qadsm is explained. The data fields are the same among all splits.

- `query`: a string, the search query one would insert into a search engine.
- `ad_title`: a string, the title of the advertisement.
- `ad_description`: a string, the content of the advertisement, *i.e.* the main body.
- `relevance_label`: a class label (int), how relevant the advertisement `ad_title` + `ad_description` is to the search query `query`. One of 0: Bad, 1: Good.


#### wpr

In the following each data field in wpr is explained. The data fields are the same among all splits.

- `query`: a string, the search query one would insert into a search engine.
- `web_page_title`: a string, the title of a web page.
- `web_page_snippet`: a string, the content of a web page, *i.e.* the main body.
- `relavance_label`: a class label (int), how relevant the web page `web_page_snippet` + `web_page_snippet` is to the search query `query`. One of 0: Bad, 1: Fair, 2: Good, 3: Excellent, 4: Perfect.


#### qam

In the following each data field in qam is explained. The data fields are the same among all splits.

- `question`: a string, a question.
- `answer`: a string, a possible answer to `question`.
- `label`: a class label (int), whether the `answer` is relevant to the `question`. One of 0: False, 1: True.


#### qg

In the following each data field in qg is explained. The data fields are the same among all splits.

- `answer_passage`: a string, a detailed answer to the `question`.
- `question`: a string, a question.


#### ntg

In the following each data field in ntg is explained. The data fields are the same among all splits.

- `news_body`: a string, the content of a news article.
- `news_title`: a string, the title corresponding to the news article `news_body`.


### Data Splits

#### ner

The following table shows the number of data samples/number of rows for each split in ner.

|   |train|validation.en|validation.de|validation.es|validation.nl|test.en|test.de|test.es|test.nl|
|---|----:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|
|ner|14042|         3252|         2874|         1923|         2895|   3454|   3007|   1523|   5202|


#### pos

The following table shows the number of data samples/number of rows for each split in pos.

|   |train|validation.en|validation.de|validation.es|validation.nl|validation.bg|validation.el|validation.fr|validation.pl|validation.tr|validation.vi|validation.zh|validation.ur|validation.hi|validation.it|validation.ar|validation.ru|validation.th|test.en|test.de|test.es|test.nl|test.bg|test.el|test.fr|test.pl|test.tr|test.vi|test.zh|test.ur|test.hi|test.it|test.ar|test.ru|test.th|
|---|----:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|
|pos|25376|         2001|          798|         1399|          717|         1114|          402|         1475|         2214|          987|          799|          499|          551|         1658|          563|          908|          578|          497|   2076|    976|    425|    595|   1115|    455|    415|   2214|    982|    799|    499|    534|   1683|    481|    679|    600|    497|


#### mlqa

The following table shows the number of data samples/number of rows for each split in mlqa.

|    |train|validation.en|validation.de|validation.ar|validation.es|validation.hi|validation.vi|validation.zh|test.en|test.de|test.ar|test.es|test.hi|test.vi|test.zh|
|----|----:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|------:|------:|
|mlqa|87599|         1148|          512|          517|          500|          507|          511|          504|  11590|   4517|   5335|   5253|   4918|   5495|   5137|


#### nc

The following table shows the number of data samples/number of rows for each split in nc.

|   |train |validation.en|validation.de|validation.es|validation.fr|validation.ru|test.en|test.de|test.es|test.fr|test.ru|
|---|-----:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|
|nc |100000|        10000|        10000|        10000|        10000|        10000|  10000|  10000|  10000|  10000|  10000|


#### xnli

The following table shows the number of data samples/number of rows for each split in xnli.

|    |train |validation.en|validation.ar|validation.bg|validation.de|validation.el|validation.es|validation.fr|validation.hi|validation.ru|validation.sw|validation.th|validation.tr|validation.ur|validation.vi|validation.zh|test.en|test.ar|test.bg|test.de|test.el|test.es|test.fr|test.hi|test.ru|test.sw|test.th|test.tr|test.ur|test.vi|test.zh|
|----|-----:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|
|xnli|392702|         2490|         2490|         2490|         2490|         2490|         2490|         2490|         2490|         2490|         2490|         2490|         2490|         2490|         2490|         2490|   5010|   5010|   5010|   5010|   5010|   5010|   5010|   5010|   5010|   5010|   5010|   5010|   5010|   5010|   5010|

The following table shows the number of data samples/number of rows for each split in mlqa.

|    |train|validation.en|validation.de|validation.ar|validation.es|validation.hi|validation.vi|validation.zh|test.en|test.de|test.ar|test.es|test.hi|test.vi|test.zh|                                                                                                                                                      
|----|----:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|------:|------:|                                                                                                                                                      
|mlqa|87599|         1148|          512|          517|          500|          507|          511|          504|  11590|   4517|   5335|   5253|   4918|   5495|   5137|                                                                                                                                                      


#### nc

The following table shows the number of data samples/number of rows for each split in nc.

|   |train |validation.en|validation.de|validation.es|validation.fr|validation.ru|test.en|test.de|test.es|test.fr|test.ru|
|---|-----:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|
|nc |100000|        10000|        10000|        10000|        10000|        10000|  10000|  10000|  10000|  10000|  10000|


#### xnli

The following table shows the number of data samples/number of rows for each split in xnli.

|    |train |validation.en|validation.ar|validation.bg|validation.de|validation.el|validation.es|validation.fr|validation.hi|validation.ru|validation.sw|validation.th|validation.tr|validation.ur|validation.vi|validation.zh|test.en|test.ar|test.bg|test.de|test.el|test.es|test.fr|test.hi|test.ru|test.sw|test.th|test.tr|test.ur|test.vi|test.zh|
|----|-----:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|
|xnli|392702|         2490|         2490|         2490|         2490|         2490|         2490|         2490|         2490|         2490|         2490|         2490|         2490|         2490|         2490|         2490|   5010|   5010|   5010|   5010|   5010|   5010|   5010|   5010|   5010|   5010|   5010|   5010|   5010|   5010|   5010|


#### paws-x

The following table shows the number of data samples/number of rows for each split in paws-x.

|      |train|validation.en|validation.de|validation.es|validation.fr|test.en|test.de|test.es|test.fr|
|------|----:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|
|paws-x|49401|         2000|         2000|         2000|         2000|   2000|   2000|   2000|   2000|


#### qadsm

The following table shows the number of data samples/number of rows for each split in qadsm.

|     |train |validation.en|validation.de|validation.fr|test.en|test.de|test.fr|
|-----|-----:|------------:|------------:|------------:|------:|------:|------:|
|qadsm|100000|        10000|        10000|        10000|  10000|  10000|  10000|


#### wpr

The following table shows the number of data samples/number of rows for each split in wpr.

|   |train|validation.en|validation.de|validation.es|validation.fr|validation.it|validation.pt|validation.zh|test.en|test.de|test.es|test.fr|test.it|test.pt|test.zh|
|---|----:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|------:|------:|
|wpr|99997|        10008|        10004|        10004|        10005|        10003|        10001|        10002|  10004|   9997|  10006|  10020|  10001|  10015|   9999|


#### qam

The following table shows the number of data samples/number of rows for each split in qam.

|   |train |validation.en|validation.de|validation.fr|test.en|test.de|test.fr|
|---|-----:|------------:|------------:|------------:|------:|------:|------:|
|qam|100000|        10000|        10000|        10000|  10000|  10000|  10000|


#### qg

The following table shows the number of data samples/number of rows for each split in qg.

|   |train |validation.en|validation.de|validation.es|validation.fr|validation.it|validation.pt|test.en|test.de|test.es|test.fr|test.it|test.pt|
|---|-----:|------------:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|------:|
|qg |100000|        10000|        10000|        10000|        10000|        10000|        10000|  10000|  10000|  10000|  10000|  10000|  10000|


#### ntg

The following table shows the number of data samples/number of rows for each split in ntg.

|   |train |validation.en|validation.de|validation.es|validation.fr|validation.ru|test.en|test.de|test.es|test.fr|test.ru|
|---|-----:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|
|ntg|300000|        10000|        10000|        10000|        10000|        10000|  10000|  10000|  10000|  10000|  10000|

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

[More Information Needed]

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

The dataset is maintained mainly by Yaobo Liang, Yeyun Gong, Nan Duan, Ming Gong, Linjun Shou, and Daniel Campos from Microsoft Research.

### Licensing Information

The licensing status of the dataset hinges on the legal status of [XGLUE](https://microsoft.github.io/XGLUE/) hich is unclear.

### Citation Information

```
@article{Liang2020XGLUEAN,
  title={XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training, Understanding and Generation},
  author={Yaobo Liang and Nan Duan and Yeyun Gong and Ning Wu and Fenfei Guo and Weizhen Qi and Ming Gong and Linjun Shou and Daxin Jiang and Guihong Cao and Xiaodong Fan and Ruofei Zhang and Rahul Agrawal and Edward Cui and Sining Wei and Taroon Bharti and Ying Qiao and Jiun-Hung Chen and Winnie Wu and Shuguang Liu and Fan Yang and Daniel Campos and Rangan Majumder and Ming Zhou},
  journal={arXiv},
  year={2020},
  volume={abs/2004.01401}
}
```

### Contributions

Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset.