Datasets:
Tasks:
Audio Classification
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
< 1K
Tags:
SER
Speech Emotion Recognition
Speech Emotion Classification
Audio Classification
Audio
Emotion
License:
File size: 2,059 Bytes
519bb97 2f5721d 519bb97 b0de7f5 2f5721d 519bb97 2f5721d 519bb97 2f5721d 519bb97 b0de7f5 2f5721d 519bb97 2f5721d 519bb97 2f5721d 519bb97 b0de7f5 2f5721d 519bb97 7552323 519bb97 2f5721d 519bb97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
# REQUIREMENTS
# $ pip install scipy
# $ pip install "polars[all]"
# You may need to install snappy in order to run this script:
# $ sudo pacman -S snappy
# $ pip install python-snappy
import polars as pl
import numpy as np
from scipy.io.wavfile import write
import os
# User all available cores
# It seems useless in the context of this script
n_cores = str(os.cpu_count())
os.environ['OMP_NUM_THREADS'] = n_cores
os.environ['MKL_NUM_THREADS'] = n_cores
# Define directory to store the samples
cwd = os.getcwd()
sample_dir = str(cwd) + '/wavs/'
# Create the wavs dir if it does not exist
if not os.path.isdir('wavs'):
os.makedirs('wavs')
# All columns from the parquet file except the one with the audio numpy arrays (it is huge)
columns = ['ytid', 'ytid_seg', 'start', 'end', 'sentiment', 'happiness', 'sadness', 'anger', 'fear', 'disgust', 'surprise']
# Read the parquet file with polars
df = pl.read_parquet('sqe_messai.parquet', columns = columns)
# Replace the generic path with the actual path
bad_dir = df.row(0)[1].rsplit('/', 1)[0] + '/'
df = df.with_columns(pl.col('ytid_seg').str.replace_all(bad_dir, sample_dir))
# Export the csv file (excluding the last column)
df.write_csv('sqe_messai_nowav.csv')
print(df)
# Now we are only interested on the column with the paths and the audio numpy arrays
columns2 = ['ytid_seg', 'wav2numpy']
# Read the parquet file with polars (this will take a while)
df2 = pl.read_parquet('sqe_messai.parquet', use_pyarrow=False, columns = columns2)
# Replace the generic path with the actual path
bad_dir = df2.row(0)[0].rsplit('/', 1)[0] + '/'
df2 = df2.with_columns(pl.col('ytid_seg').str.replace_all(bad_dir, sample_dir))
# Function to convert the numpy arrays to wav files stored in the wavs folders
def numpy2wav(row):
segment = os.path.splitext(os.path.basename(os.path.normpath(row[0])))[0]
print('PROCESSED:', segment)
write(sample_dir + segment + '.wav', 16000, np.array(row[1]).astype(np.int16))
return segment
# Apply the function (this will take a while)
df2.apply(lambda x: numpy2wav(x))
|