Datasets:
jimbozhang
commited on
Commit
•
8d14d30
1
Parent(s):
ddb109b
Update README.md
Browse files
README.md
CHANGED
@@ -86,12 +86,6 @@ This corpus consists of 5000 English sentences. All the speakers are non-native,
|
|
86 |
Five experts made the scores. To avoid subjective bias, each expert scores independently under the same metric.
|
87 |
|
88 |
## Uses
|
89 |
-
```bash
|
90 |
-
pip install datasets
|
91 |
-
pip install librosa
|
92 |
-
pip install soundfile
|
93 |
-
```
|
94 |
-
|
95 |
```python
|
96 |
>>> from datasets import load_dataset
|
97 |
|
@@ -101,36 +95,61 @@ pip install soundfile
|
|
101 |
2500
|
102 |
|
103 |
>>> next(iter(test_set))
|
104 |
-
{'
|
105 |
-
'
|
106 |
-
|
107 |
-
|
108 |
-
'sampling_rate': 16000},
|
109 |
'text': 'MARK IS GOING TO SEE ELEPHANT',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
'speaker': '0003',
|
111 |
'gender': 'm',
|
112 |
'age': 6,
|
113 |
-
'
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
'words': {'text': ['MARK', 'IS', 'GOING', 'TO', 'SEE', 'ELEPHANT'],
|
118 |
-
'accuracy': [10, 10, 10, 10, 10, 10],
|
119 |
-
'stress': [10, 10, 10, 10, 10, 10],
|
120 |
-
'total': [10, 10, 10, 10, 10, 10],
|
121 |
-
'phones': [['M', 'AA0', 'R', 'K'],
|
122 |
-
['IH0', 'Z'],
|
123 |
-
['G', 'OW0', 'IH0', 'NG'],
|
124 |
-
['T', 'UW0'],
|
125 |
-
['S', 'IY0'],
|
126 |
-
['EH1', 'L', 'IH0', 'F', 'AH0', 'N', 'T']],
|
127 |
-
'phones-accuracy': [[2.0, 2.0, 1.8, 2.0],
|
128 |
-
[2.0, 1.8],
|
129 |
-
[2.0, 2.0, 2.0, 2.0],
|
130 |
-
[2.0, 2.0],
|
131 |
-
[2.0, 2.0],
|
132 |
-
[2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]],
|
133 |
-
'mispronunciations': ['[]', '[]', '[]', '[]', '[]', '[]']}}
|
134 |
```
|
135 |
|
136 |
## The scoring metric
|
|
|
86 |
Five experts made the scores. To avoid subjective bias, each expert scores independently under the same metric.
|
87 |
|
88 |
## Uses
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
```python
|
90 |
>>> from datasets import load_dataset
|
91 |
|
|
|
95 |
2500
|
96 |
|
97 |
>>> next(iter(test_set))
|
98 |
+
{'accuracy': 9,
|
99 |
+
'completeness': 10.0,
|
100 |
+
'fluency': 9,
|
101 |
+
'prosodic': 9,
|
|
|
102 |
'text': 'MARK IS GOING TO SEE ELEPHANT',
|
103 |
+
'total': 9,
|
104 |
+
'words': [{'accuracy': 10,
|
105 |
+
'phones': ['M', 'AA0', 'R', 'K'],
|
106 |
+
'phones-accuracy': [2.0, 2.0, 1.8, 2.0],
|
107 |
+
'stress': 10,
|
108 |
+
'text': 'MARK',
|
109 |
+
'total': 10,
|
110 |
+
'mispronunciations': []},
|
111 |
+
{'accuracy': 10,
|
112 |
+
'phones': ['IH0', 'Z'],
|
113 |
+
'phones-accuracy': [2.0, 1.8],
|
114 |
+
'stress': 10,
|
115 |
+
'text': 'IS',
|
116 |
+
'total': 10,
|
117 |
+
'mispronunciations': []},
|
118 |
+
{'accuracy': 10,
|
119 |
+
'phones': ['G', 'OW0', 'IH0', 'NG'],
|
120 |
+
'phones-accuracy': [2.0, 2.0, 2.0, 2.0],
|
121 |
+
'stress': 10,
|
122 |
+
'text': 'GOING',
|
123 |
+
'total': 10,
|
124 |
+
'mispronunciations': []},
|
125 |
+
{'accuracy': 10,
|
126 |
+
'phones': ['T', 'UW0'],
|
127 |
+
'phones-accuracy': [2.0, 2.0],
|
128 |
+
'stress': 10,
|
129 |
+
'text': 'TO',
|
130 |
+
'total': 10,
|
131 |
+
'mispronunciations': []},
|
132 |
+
{'accuracy': 10,
|
133 |
+
'phones': ['S', 'IY0'],
|
134 |
+
'phones-accuracy': [2.0, 2.0],
|
135 |
+
'stress': 10,
|
136 |
+
'text': 'SEE',
|
137 |
+
'total': 10,
|
138 |
+
'mispronunciations': []},
|
139 |
+
{'accuracy': 10,
|
140 |
+
'phones': ['EH1', 'L', 'IH0', 'F', 'AH0', 'N', 'T'],
|
141 |
+
'phones-accuracy': [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0],
|
142 |
+
'stress': 10,
|
143 |
+
'text': 'ELEPHANT',
|
144 |
+
'total': 10,
|
145 |
+
'mispronunciations': []}],
|
146 |
'speaker': '0003',
|
147 |
'gender': 'm',
|
148 |
'age': 6,
|
149 |
+
'audio': {'path': '000030012.wav',
|
150 |
+
'array': array([-0.00119019, -0.00500488, -0.00283813, ..., 0.00274658,
|
151 |
+
0. , 0.00125122]),
|
152 |
+
'sampling_rate': 16000}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
```
|
154 |
|
155 |
## The scoring metric
|