jimbozhang commited on
Commit
8d14d30
1 Parent(s): ddb109b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -32
README.md CHANGED
@@ -86,12 +86,6 @@ This corpus consists of 5000 English sentences. All the speakers are non-native,
86
  Five experts made the scores. To avoid subjective bias, each expert scores independently under the same metric.
87
 
88
  ## Uses
89
- ```bash
90
- pip install datasets
91
- pip install librosa
92
- pip install soundfile
93
- ```
94
-
95
  ```python
96
  >>> from datasets import load_dataset
97
 
@@ -101,36 +95,61 @@ pip install soundfile
101
  2500
102
 
103
  >>> next(iter(test_set))
104
- {'file': 'WAVE/SPEAKER0003/000030012.WAV',
105
- 'audio': {
106
- 'path': 'WAVE/SPEAKER0003/000030012.WAV',
107
- 'array': array([-0.00119019, -0.00500488, -0.00283813, ..., 0.00274658, 0. , 0.00125122]),
108
- 'sampling_rate': 16000},
109
  'text': 'MARK IS GOING TO SEE ELEPHANT',
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
  'speaker': '0003',
111
  'gender': 'm',
112
  'age': 6,
113
- 'accuracy': 9,
114
- 'fluency': 9,
115
- 'prosodic': 9,
116
- 'total': 9,
117
- 'words': {'text': ['MARK', 'IS', 'GOING', 'TO', 'SEE', 'ELEPHANT'],
118
- 'accuracy': [10, 10, 10, 10, 10, 10],
119
- 'stress': [10, 10, 10, 10, 10, 10],
120
- 'total': [10, 10, 10, 10, 10, 10],
121
- 'phones': [['M', 'AA0', 'R', 'K'],
122
- ['IH0', 'Z'],
123
- ['G', 'OW0', 'IH0', 'NG'],
124
- ['T', 'UW0'],
125
- ['S', 'IY0'],
126
- ['EH1', 'L', 'IH0', 'F', 'AH0', 'N', 'T']],
127
- 'phones-accuracy': [[2.0, 2.0, 1.8, 2.0],
128
- [2.0, 1.8],
129
- [2.0, 2.0, 2.0, 2.0],
130
- [2.0, 2.0],
131
- [2.0, 2.0],
132
- [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]],
133
- 'mispronunciations': ['[]', '[]', '[]', '[]', '[]', '[]']}}
134
  ```
135
 
136
  ## The scoring metric
 
86
  Five experts made the scores. To avoid subjective bias, each expert scores independently under the same metric.
87
 
88
  ## Uses
 
 
 
 
 
 
89
  ```python
90
  >>> from datasets import load_dataset
91
 
 
95
  2500
96
 
97
  >>> next(iter(test_set))
98
+ {'accuracy': 9,
99
+ 'completeness': 10.0,
100
+ 'fluency': 9,
101
+ 'prosodic': 9,
 
102
  'text': 'MARK IS GOING TO SEE ELEPHANT',
103
+ 'total': 9,
104
+ 'words': [{'accuracy': 10,
105
+ 'phones': ['M', 'AA0', 'R', 'K'],
106
+ 'phones-accuracy': [2.0, 2.0, 1.8, 2.0],
107
+ 'stress': 10,
108
+ 'text': 'MARK',
109
+ 'total': 10,
110
+ 'mispronunciations': []},
111
+ {'accuracy': 10,
112
+ 'phones': ['IH0', 'Z'],
113
+ 'phones-accuracy': [2.0, 1.8],
114
+ 'stress': 10,
115
+ 'text': 'IS',
116
+ 'total': 10,
117
+ 'mispronunciations': []},
118
+ {'accuracy': 10,
119
+ 'phones': ['G', 'OW0', 'IH0', 'NG'],
120
+ 'phones-accuracy': [2.0, 2.0, 2.0, 2.0],
121
+ 'stress': 10,
122
+ 'text': 'GOING',
123
+ 'total': 10,
124
+ 'mispronunciations': []},
125
+ {'accuracy': 10,
126
+ 'phones': ['T', 'UW0'],
127
+ 'phones-accuracy': [2.0, 2.0],
128
+ 'stress': 10,
129
+ 'text': 'TO',
130
+ 'total': 10,
131
+ 'mispronunciations': []},
132
+ {'accuracy': 10,
133
+ 'phones': ['S', 'IY0'],
134
+ 'phones-accuracy': [2.0, 2.0],
135
+ 'stress': 10,
136
+ 'text': 'SEE',
137
+ 'total': 10,
138
+ 'mispronunciations': []},
139
+ {'accuracy': 10,
140
+ 'phones': ['EH1', 'L', 'IH0', 'F', 'AH0', 'N', 'T'],
141
+ 'phones-accuracy': [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0],
142
+ 'stress': 10,
143
+ 'text': 'ELEPHANT',
144
+ 'total': 10,
145
+ 'mispronunciations': []}],
146
  'speaker': '0003',
147
  'gender': 'm',
148
  'age': 6,
149
+ 'audio': {'path': '000030012.wav',
150
+ 'array': array([-0.00119019, -0.00500488, -0.00283813, ..., 0.00274658,
151
+ 0. , 0.00125122]),
152
+ 'sampling_rate': 16000}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
  ```
154
 
155
  ## The scoring metric