File size: 1,608 Bytes
d73a877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ca46c1
 
d73a877
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import csv
import datasets

_DOWNLOAD_URL = "https://huggingface.co/datasets/mrojas/task1a/resolve/main/data.csv"

class Task1a(datasets.GeneratorBasedBuilder):
    """Task1a classification dataset."""

    def _info(self):
        return datasets.DatasetInfo(
            features=datasets.Features(
                {   
                    "text": datasets.Value("string"),
                    "label": datasets.ClassLabel(names = ["0", "1"]),
                }
            )
        )

    def _split_generators(self, dl_manager):
        path = dl_manager.download_and_extract(_DOWNLOAD_URL)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": path, "is_test": False}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": path, "is_test": True}),
        ]

    def _generate_examples(self, filepath, is_test, test_size = 0.3):
        """Generate examples."""
        with open(filepath, encoding="utf-8") as csv_file:
            train_threshold = 122
            csv_reader = csv.reader(
                csv_file
            )
            # next(csv_reader, None)  # skip the headers
            for id_, row in enumerate(csv_reader):
                if id_ > 0:
                    print(row)
                    text, label = row
                    current_row = id_, {"text": text, "label": int(label)}
                    if (id_ < train_threshold) & (not is_test):
                        yield current_row
                    if (id_ >= train_threshold) & (is_test):
                        yield current_row