|
from typing import List |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
_ORIGINAL_FEATURE_NAMES = [ |
|
"id", |
|
"clump_thickness", |
|
"uniformity_of_cell_size", |
|
"uniformity_of_cell_shape", |
|
"marginal_adhesion", |
|
"single_epithelial_cell_size", |
|
"bare_nuclei", |
|
"bland_chromatin", |
|
"normal_nucleoli", |
|
"mitoses", |
|
"is_cancer" |
|
] |
|
_BASE_FEATURE_NAMES = [ |
|
"clump_thickness", |
|
"uniformity_of_cell_size", |
|
"uniformity_of_cell_shape", |
|
"marginal_adhesion", |
|
"single_epithelial_cell_size", |
|
"bare_nuclei", |
|
"bland_chromatin", |
|
"normal_nucleoli", |
|
"mitoses", |
|
"is_cancer" |
|
] |
|
|
|
DESCRIPTION = "Breast dataset for cancer prediction." |
|
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29" |
|
_URLS = ("https://huggingface.co/datasets/mstz/breast/raw/main/breast-cancer-wisconsin.data") |
|
_CITATION = """ |
|
@article{wolberg1990multisurface, |
|
title={Multisurface method of pattern separation for medical diagnosis applied to breast cytology.}, |
|
author={Wolberg, William H and Mangasarian, Olvi L}, |
|
journal={Proceedings of the national academy of sciences}, |
|
volume={87}, |
|
number={23}, |
|
pages={9193--9196}, |
|
year={1990}, |
|
publisher={National Acad Sciences} |
|
} |
|
""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://huggingface.co/datasets/mstz/breast/raw/main/breast-cancer-wisconsin.data", |
|
} |
|
features_types_per_config = { |
|
"cancer": { |
|
"clump_thickness": datasets.Value("int8"), |
|
"uniformity_of_cell_size": datasets.Value("int8"), |
|
"uniformity_of_cell_shape": datasets.Value("int8"), |
|
"marginal_adhesion": datasets.Value("int8"), |
|
"single_epithelial_cell_size": datasets.Value("int8"), |
|
"bare_nuclei": datasets.Value("int8"), |
|
"bland_chromatin": datasets.Value("int8"), |
|
"normal_nucleoli": datasets.Value("int8"), |
|
"mitoses": datasets.Value("int8"), |
|
"is_cancer": datasets.ClassLabel(num_classes=2, names=("no", "yes")) |
|
} |
|
|
|
} |
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class BreastConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(BreastConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class Breast(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "cancer" |
|
BUILDER_CONFIGS = [ |
|
BreastConfig(name="cancer", |
|
description="Breast cancer binary classification."), |
|
] |
|
|
|
|
|
def _info(self): |
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
if self.config.name == "cancer": |
|
data = pandas.read_csv(filepath, header=None) |
|
data.columns=_ORIGINAL_FEATURE_NAMES |
|
|
|
data = self.preprocess(data, config=self.config.name) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
else: |
|
raise ValueError(f"Unknown config: {self.config.name}") |
|
|
|
def preprocess(self, data: pandas.DataFrame, config: str = "cancer") -> pandas.DataFrame: |
|
data.drop("id", axis="columns", inplace=True) |
|
|
|
data = data[data.bare_nuclei != "?"] |
|
data = data.astype({f: int for f in data.columns}) |
|
|
|
data.columns = _BASE_FEATURE_NAMES |
|
data.loc[:, "is_cancer"] = data.is_cancer.apply(lambda x: 0 if x == 2 else 1) |
|
|
|
|
|
return data |
|
|