from typing import List import datasets import pandas VERSION = datasets.Version("1.0.0") _ORIGINAL_FEATURE_NAMES = [ "id", "clump_thickness", "uniformity_of_cell_size", "uniformity_of_cell_shape", "marginal_adhesion", "single_epithelial_cell_size", "bare_nuclei", "bland_chromatin", "normal_nucleoli", "mitoses", "is_cancer" ] _BASE_FEATURE_NAMES = [ "clump_thickness", "uniformity_of_cell_size", "uniformity_of_cell_shape", "marginal_adhesion", "single_epithelial_cell_size", "bare_nuclei", "bland_chromatin", "normal_nucleoli", "mitoses", "is_cancer" ] DESCRIPTION = "Breast dataset for cancer prediction." _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29" _URLS = ("https://huggingface.co/datasets/mstz/breast/raw/main/breast-cancer-wisconsin.data") _CITATION = """ @article{wolberg1990multisurface, title={Multisurface method of pattern separation for medical diagnosis applied to breast cytology.}, author={Wolberg, William H and Mangasarian, Olvi L}, journal={Proceedings of the national academy of sciences}, volume={87}, number={23}, pages={9193--9196}, year={1990}, publisher={National Acad Sciences} } """ # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/breast/raw/main/breast-cancer-wisconsin.data", } features_types_per_config = { "cancer": { "clump_thickness": datasets.Value("int8"), "uniformity_of_cell_size": datasets.Value("int8"), "uniformity_of_cell_shape": datasets.Value("int8"), "marginal_adhesion": datasets.Value("int8"), "single_epithelial_cell_size": datasets.Value("int8"), "bare_nuclei": datasets.Value("int8"), "bland_chromatin": datasets.Value("int8"), "normal_nucleoli": datasets.Value("int8"), "mitoses": datasets.Value("int8"), "is_cancer": datasets.ClassLabel(num_classes=2, names=("no", "yes")) } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class BreastConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(BreastConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Breast(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "cancer" BUILDER_CONFIGS = [ BreastConfig(name="cancer", description="Breast cancer binary classification."), ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), ] def _generate_examples(self, filepath: str): if self.config.name == "cancer": data = pandas.read_csv(filepath, header=None) data.columns=_ORIGINAL_FEATURE_NAMES data = self.preprocess(data, config=self.config.name) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row else: raise ValueError(f"Unknown config: {self.config.name}") def preprocess(self, data: pandas.DataFrame, config: str = "cancer") -> pandas.DataFrame: data.drop("id", axis="columns", inplace=True) data = data[data.bare_nuclei != "?"] data = data.astype({f: int for f in data.columns}) data.columns = _BASE_FEATURE_NAMES data.loc[:, "is_cancer"] = data.is_cancer.apply(lambda x: 0 if x == 2 else 1) return data