from typing import List from functools import partial import datasets import pandas VERSION = datasets.Version("1.0.0") DESCRIPTION = "Car dataset from the UCI repository." _HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/19/car+evaluation" _URLS = ("https://archive-beta.ics.uci.edu/dataset/19/car+evaluation") _CITATION = """ @misc{misc_car_evaluation_19, author = {Bohanec,Marko}, title = {{Car Evaluation}}, year = {1997}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C5JP48}} } """ # Dataset info _BASE_FEATURE_NAMES = [ "buying", "maint", "doors", "persons", "lug_boot", "safety", "acceptability_level" ] urls_per_split = { "train": "https://huggingface.co/datasets/mstz/car/raw/main/car.data" } features_types_per_config = { "car": { "buying": datasets.Value("int8"), "maint": datasets.Value("int8"), "doors": datasets.Value("int8"), "persons": datasets.Value("int8"), "lug_boot": datasets.Value("int8"), "safety": datasets.Value("int8"), "acceptability_level": datasets.ClassLabel(num_classes=4, names=("unacceptable", "acceptable", "good", "very good")) }, "car_binary": { "buying": datasets.Value("int8"), "maint": datasets.Value("int8"), "doors": datasets.Value("int8"), "persons": datasets.Value("int8"), "lug_boot": datasets.Value("int8"), "safety": datasets.Value("int8"), "acceptability_level": datasets.ClassLabel(num_classes=2, names=("unacceptable", "acceptable")) }, } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} _ENCODING_DICS = { "buying": { "vhigh": 3, "high": 2, "med": 1, "low": 0 }, "maint": { "vhigh": 3, "high": 2, "med": 1, "low": 0 }, "doors": { "0": 0, "1": 1, "2": 2, "3": 3, "4": 4, "5more": 5 }, "persons": { "0": 0, "1": 1, "2": 2, "3": 3, "4": 4, "more": 5 }, "lug_boot": { "big": 2, "med": 1, "small": 0, }, "safety": { "high": 2, "med": 1, "low": 0, }, "acceptability_level": { "unacc": 0, "acc": 1, "good": 2, "vgood": 3 } } class CarConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(CarConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Car(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "car" BUILDER_CONFIGS = [ CarConfig(name="car", description="Car for 4-ary classification."), CarConfig(name="car_binary", description="Car for binary classification."), ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath, header=None) data = self.preprocess(data) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame: data.columns = _BASE_FEATURE_NAMES for feature in _ENCODING_DICS: encoding_function = partial(self.encode, feature) data.loc[:, feature] = data[feature].apply(encoding_function) if config == "car_binary": data.loc[:, "acceptability_level"] = data["acceptability_level"].apply(lambda x: x if x == 0 else 1) return data def encode(self, feature, value): if feature in _ENCODING_DICS: return _ENCODING_DICS[feature][value] raise ValueError(f"Unknown feature: {feature}")