from typing import List import datasets import pandas VERSION = datasets.Version("1.0.0") _BASE_FEATURE_NAMES = [ "party", "vote_on_handicapped_infants_bill", "vote_on_water_project_cost_sharing_bill", "vote_on_adoption_of_the_budget_resolution_bill", "vote_on_physician_fee_freeze_bill", "vote_on_el_salvador_aid_bill", "vote_on_religious_groups_in_schools_bill", "vote_on_anti_satellite_test_ban_bill", "vote_on_aid_to_nicaraguan_contras_bill", "vote_on_mx_missile_bill", "vote_on_immigration_bill", "vote_on_synfuels_corporation_cutback_bill", "vote_on_education_spending_bill", "vote_on_superfund_right_to_sue_bill", "vote_on_crime_bill", "vote_on_duty_free_exports_bill", "vote_on_export_administration_act_south_africa_bill", ] DESCRIPTION = "Congress dataset from the UCI ML repository." _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Congress" _URLS = ("https://archive-beta.ics.uci.edu/dataset/105/congressional+voting+records") _CITATION = """ @misc{misc_congressional_voting_records_105, title = {{Congressional Voting Records}}, year = {1987}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C5C01P}} }""" # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/congress/raw/main/house-votes-84.data" } features_types_per_config = { "voting": { "vote_on_handicapped_infants_bill": datasets.Value("string"), "vote_on_water_project_cost_sharing_bill": datasets.Value("string"), "vote_on_adoption_of_the_budget_resolution_bill": datasets.Value("string"), "vote_on_physician_fee_freeze_bill": datasets.Value("string"), "vote_on_el_salvador_aid_bill": datasets.Value("string"), "vote_on_religious_groups_in_schools_bill": datasets.Value("string"), "vote_on_anti_satellite_test_ban_bill": datasets.Value("string"), "vote_on_aid_to_nicaraguan_contras_bill": datasets.Value("string"), "vote_on_mx_missile_bill": datasets.Value("string"), "vote_on_immigration_bill": datasets.Value("string"), "vote_on_synfuels_corporation_cutback_bill": datasets.Value("string"), "vote_on_education_spending_bill": datasets.Value("string"), "vote_on_superfund_right_to_sue_bill": datasets.Value("string"), "vote_on_crime_bill": datasets.Value("string"), "vote_on_duty_free_exports_bill": datasets.Value("string"), "vote_on_export_administration_act_south_africa_bill": datasets.Value("string"), "party": datasets.ClassLabel(num_classes=2, names=("democrat", "republican")), } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class CongressConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(CongressConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Congress(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "voting" BUILDER_CONFIGS = [ CongressConfig(name="voting", description="Binary classification of politician, either democrat or republican.") ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath, header=None) data = self.preprocess(data, config=self.config.name) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame: data.columns = _BASE_FEATURE_NAMES vote_dictionary = { "y": "pro", "n": "against", "?": "did_not_vote", } for feature in _BASE_FEATURE_NAMES[1:]: data.loc[:, feature] = data[feature].apply(lambda x: vote_dictionary[x]) data.loc[:, "party"] = data["party"].apply(lambda x: 0 if x == "democrat" else 1) data = data.astype({"party": "int8"}) data = data[list(features_types_per_config[config].keys())] return data