"""Monk Dataset""" from typing import List from functools import partial import datasets import pandas VERSION = datasets.Version("1.0.0") _ORIGINAL_FEATURE_NAMES = [ "is_monk", "head_shape", "body_shape", "is_smiling", "holding", "jacket_color", "has_tie", "ID" ] _BASE_FEATURE_NAMES = [ "head_shape", "body_shape", "is_smiling", "holding", "jacket_color", "has_tie", "is_monk" ] _ENCODING_DICS = { "head_shape": { 0: "round", 1: "square", 2: "octagon", }, "body_shape": { 0: "round", 1: "square", 2: "octagon", }, "holding": { 0: "sword", 1: "baloon", 2: "flag", }, "jacket_color": { 0: "red", 1: "yellow", 2: "green", 3: "blue" }, "is_smiling": { 1: True, 0: False }, "has_tie": { 1: True, 0: False } } DESCRIPTION = "Monk quality dataset." _HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/70/monk+s+problems" _URLS = ("https://archive-beta.ics.uci.edu/dataset/70/monk+s+problems") _CITATION = """ @misc{misc_monk's_problems_70, author = {Wnek,J.}, title = {{MONK's Problems}}, year = {1992}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C5R30R}} }""" # Dataset info urls_per_split = { "monks1": { "train": "https://huggingface.co/datasets/mstz/monks/raw/main/monks-1.train", "test": "https://huggingface.co/datasets/mstz/monks/raw/main/monks-1.test" }, "monks2": { "train": "https://huggingface.co/datasets/mstz/monks/raw/main/monks-2.train", "test": "https://huggingface.co/datasets/mstz/monks/raw/main/monks-2.test" }, "monks3": { "train": "https://huggingface.co/datasets/mstz/monks/raw/main/monks-3.train", "test": "https://huggingface.co/datasets/mstz/monks/raw/main/monks-3.test" } } features_types_per_config = { "monks1": { "head_shape": datasets.Value("string"), "body_shape": datasets.Value("string"), "is_smiling": datasets.Value("bool"), "holding": datasets.Value("string"), "jacket_color": datasets.Value("string"), "has_tie": datasets.Value("bool"), "is_monk": datasets.ClassLabel(num_classes=2) } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class MonkConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(MonkConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Monk(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "monks1" BUILDER_CONFIGS = [ MonkConfig(name="monks1", description="Monk 1 problem."), MonkConfig(name="monks2", description="Monk 2 problem."), MonkConfig(name="monks3", description="Monk 3 problem.") ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath, header=None, sep=" ") data = self.preprocess(data, config=self.config.name) print(data.head()) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def preprocess(self, data: pandas.DataFrame, config: str = "monks1") -> pandas.DataFrame: data.columns = _BASE_FEATURE_NAMES data.drop("ID", axis="columns", inplace=True) data.loc[:, "has_tie"] = data.has_tie.apply(bool) data.loc[:, "is_smiling"] = data.is_smiling.apply(bool) for feature in _ENCODING_DICS: encoding_function = partial(self.encode, feature) data.loc[:, feature] = data[feature].apply(encoding_function) return data[list(features_types_per_config[config].keys())] def encode(self, feature, value): if feature in _ENCODING_DICS: return _ENCODING_DICS[feature][value] raise ValueError(f"Unknown feature: {feature}")