Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -25,11 +25,14 @@ size_categories:
|
|
25 |
- [Data Instances](#data-instances)
|
26 |
- [Data Fields](#data-fields)
|
27 |
- [Data Splits](#data-splits)
|
|
|
|
|
|
|
28 |
- [Dataset Creation](#dataset-creation)
|
29 |
- [Curation Rationale](#curation-rationale)
|
30 |
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
31 |
-
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
32 |
- [Social Impact of Dataset](#social-impact-of-dataset)
|
|
|
33 |
- [Additional Information](#additional-information)
|
34 |
- [Dataset Curators](#dataset-curators)
|
35 |
- [Licensing Information](#licensing-information)
|
@@ -120,12 +123,26 @@ Since code generation models are often trained on dumps of GitHub a dataset not
|
|
120 |
|
121 |
None.
|
122 |
|
123 |
-
## Considerations for Using the Data
|
124 |
-
Make sure to sandbox the execution environment.
|
125 |
-
|
126 |
### Social Impact of Dataset
|
127 |
With this dataset code generating models can be better evaluated which leads to fewer issues introduced when using such models.
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
### Dataset Curators
|
130 |
AWS AI Labs
|
131 |
|
|
|
25 |
- [Data Instances](#data-instances)
|
26 |
- [Data Fields](#data-fields)
|
27 |
- [Data Splits](#data-splits)
|
28 |
+
- [Executional Correctness](#execution)
|
29 |
+
- [Execution Example](#execution-example)
|
30 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
31 |
- [Dataset Creation](#dataset-creation)
|
32 |
- [Curation Rationale](#curation-rationale)
|
33 |
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
|
|
34 |
- [Social Impact of Dataset](#social-impact-of-dataset)
|
35 |
+
|
36 |
- [Additional Information](#additional-information)
|
37 |
- [Dataset Curators](#dataset-curators)
|
38 |
- [Licensing Information](#licensing-information)
|
|
|
123 |
|
124 |
None.
|
125 |
|
|
|
|
|
|
|
126 |
### Social Impact of Dataset
|
127 |
With this dataset code generating models can be better evaluated which leads to fewer issues introduced when using such models.
|
128 |
|
129 |
+
## Execution
|
130 |
+
|
131 |
+
### Execution Example
|
132 |
+
Install the repo [mbxp-exec-eval](https://github.com/amazon-science/mbxp-exec-eval) to execute generations or canonical solutions for the prompts from this dataset.
|
133 |
+
|
134 |
+
```python
|
135 |
+
>>> from datasets import load_dataset
|
136 |
+
>>> from mxeval.execution import check_correctness
|
137 |
+
>>> mathqa_python = load_dataset("mxeval/mathqa-x", "python", split="test")
|
138 |
+
>>> example_problem = mathqa_python[0]
|
139 |
+
>>> check_correctness(example_problem, example_problem["canonical_solution"], timeout=20.0)
|
140 |
+
{'task_id': 'MathQA/0', 'passed': True, 'result': 'passed', 'completion_id': None, 'time_elapsed': 9.673357009887695}
|
141 |
+
```
|
142 |
+
|
143 |
+
### Considerations for Using the Data
|
144 |
+
Make sure to sandbox the execution environment.
|
145 |
+
|
146 |
### Dataset Curators
|
147 |
AWS AI Labs
|
148 |
|