--- configs: - config_name: multi-turn_chat data_files: - split: test path: multi-turn_chat.parquet - config_name: code_completion data_files: - split: test path: code_completion.parquet - config_name: instruction_tuning data_files: - split: test path: instruction_tuning.parquet - config_name: code_fixing data_files: - split: test path: code_fixing.parquet - config_name: rag data_files: - split: test path: rag.parquet - config_name: large_summarization data_files: - split: test path: large_summarization.parquet - config_name: docstring data_files: - split: test path: docstring.parquet --- This dataset contains inference performance benchmarking obtained with vllm version 0.6.1.post2 on different use-case scenarios. The scenarios are defined as bellow:
Use case Prompt tokens Generated tokens
Code Completion 256 1024
Docstring Generation 768 128
Code Fixing 1024 1024
RAG 1024 128
Instruction Following 256 128
Multi-turn chat 512 256
Large Summarization 4096 512
Benchmarking was conducted with [GuideLLM](https://github.com/neuralmagic/guidellm) using the following syntax: ``` guidellm --model --data-type emulated --data "prompt_tokens=,generated_tokens=" ```