Datasets:
The dataset viewer is not available for this split.
Error code: StreamingRowsError Exception: OSError Message: cannot find loader for this HDF5 file Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/utils.py", line 99, in get_rows_or_raise return get_rows( File "/src/libs/libcommon/src/libcommon/utils.py", line 197, in decorator return func(*args, **kwargs) File "/src/services/worker/src/worker/utils.py", line 77, in get_rows rows_plus_one = list(itertools.islice(ds, rows_max_number + 1)) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2097, in __iter__ example = _apply_feature_types_on_example( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1635, in _apply_feature_types_on_example decoded_example = features.decode_example(encoded_example, token_per_repo_id=token_per_repo_id) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 2044, in decode_example return { File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 2045, in <dictcomp> column_name: decode_nested_example(feature, value, token_per_repo_id=token_per_repo_id) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 1405, in decode_nested_example return schema.decode_example(obj, token_per_repo_id=token_per_repo_id) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/image.py", line 188, in decode_example image.load() # to avoid "Too many open files" errors File "/src/services/worker/.venv/lib/python3.9/site-packages/PIL/ImageFile.py", line 366, in load raise OSError(msg) OSError: cannot find loader for this HDF5 file
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
heat1d-pde-dataset
This dataset contains numerical solutions of the 1D heat equation with cooling terms, designed for machine learning applications in scientific computing and physics-informed neural networks.
Dataset Description
Dataset Summary
The dataset consists of spatiotemporal solutions to the 1D heat equation with boundary conditions and a cooling term. Each sample includes initial states, final states (with and without noise), simulation parameters, and elapsed times.
Supported Tasks
- PDE Solution Prediction
- Parameter Inference
- Physics-Informed Machine Learning
- Scientific Machine Learning Benchmarking
Dataset Structure
{
'initial_states': [N, 200], # Initial temperature distribution
'final_states': [N, 200], # Final temperature distribution (with noise)
'clean_initial_states': [N, 200], # Initial states without noise
'clean_final_states': [N, 200], # Final states without noise
'parameters': [N, 3], # [alpha, k, t_env]
'elapsed_times': [N], # Time between initial and final states
}
Data Fields
initial_states
: Temperature distribution at t=0final_states
: Temperature distribution at t=elapsed_timeclean_initial_states
: Noise-free initial statesclean_final_states
: Noise-free final statesparameters
:alpha
: Thermal diffusivity [1e-5, 1e-4]k
: Cooling coefficient [0.01, 0.1]t_env
: Environmental temperature [15, 35]
elapsed_times
: Time difference between states
Data Splits
All data is provided in the training set. Users should create their own validation/test splits.
Source Code
The dataset was generated using a finite difference solver for the heat equation:
∂T/∂t = α∂²T/∂x² - k(T - T_env)
with boundary conditions:
- T(x=0, t) = temp1
- T(x=L, t) = temp2
Noise Levels
- Input states: 1% of temperature range
- Output states: 0.5% of temperature range
- Parameters: 1% of parameter values
Usage
Install the datasets library:
pip install datasets
Load the dataset:
from datasets import load_dataset
# Download files locally
dataset = load_dataset("nick-leland/heat1d-pde-dataset", download_mode="force_redownload")
# Read the initial structure (h5py files)
df = dataset['train'].data.to_pandas()
file_path = df['image'][0]['path']
data = h5py.File(file_path, 'r')
# Access data
initial_states = data['initial_states'][:]
final_states = data['final_states'][:]
parameters = data['parameters'][:]
elapsed_times = data['elapsed_times'][:]
Dataset Creator
Nicholas Leland
Licensing Information
license: mit
- Downloads last month
- 55