File size: 7,347 Bytes
4ce4025 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import contextlib
import functools
import io
import os
import time
from typing import Union
import av
import numpy as np
import torch
class FrameSelectionMethod:
"""
Enum-like class for frame selection methods π
"""
RANDOM: str = "random" # π²
UNIFORM: str = "uniform" # π
SEQUENTIAL: str = "sequential" #
def seek_to_second(container, stream, second):
# Convert the second to the stream's time base
timestamp = int(
second * stream.time_base.denominator / stream.time_base.numerator
)
# Seek to the timestamp
container.seek(timestamp, stream=stream)
return container
def duration_in_seconds(stream):
return float(stream.duration * stream.time_base)
def frame_timestamp_in_seconds(frame, stream):
return float(frame.pts * stream.time_base)
def duration_in_seconds_from_path(video_path, modality):
with av.open(video_path) as container:
stream = next(s for s in container.streams if s.type == modality)
return duration_in_seconds(stream)
def suppress_stderr(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
with open(os.devnull, "w") as devnull:
with contextlib.redirect_stderr(devnull):
return func(*args, **kwargs)
return wrapper
@suppress_stderr
def extract_frames_pyav(
video_data: Union[str, bytes],
modality: str,
starting_second: float,
ending_second: float,
num_frames: int,
rng: np.random.Generator,
frame_selection_method: str = "RANDOM",
key_frames_only: bool = False,
stereo_audio_if_available: bool = False,
single_image_frame: bool = False,
) -> torch.Tensor:
frame_dict = {}
video_source = (
io.BytesIO(video_data) if isinstance(video_data, bytes) else video_data
)
with av.open(video_source) as container:
stream = next(s for s in container.streams if s.type == modality)
if key_frames_only:
stream.codec_context.skip_frame = "NONKEY"
container = seek_to_second(container, stream, starting_second)
# Get the duration of the video
video_duration = duration_in_seconds(stream)
# print(f"Video duration: {video_duration} seconds")
# Get the FPS of the video
video_fps = stream.average_rate
# print(f"Video FPS: {video_fps}")
for frame in container.decode(stream):
# logger.info(f"Frame timestamp: {frame}")
frame_timestamp = frame_timestamp_in_seconds(frame, stream)
# logger.info(f"Frame timestamp: {frame_timestamp}")
array_frame = torch.from_numpy(
frame.to_ndarray(
format="rgb24" if modality == "video" else None
)
)
if modality == "video" and len(array_frame.shape) == 2:
array_frame = array_frame.unsqueeze(0)
if modality == "audio" and not stereo_audio_if_available:
array_frame = array_frame[0].unsqueeze(0)
if frame_timestamp > ending_second:
break
frame_dict[frame_timestamp] = array_frame
# logger.info(f"Frame dict: {frame_dict}")
if single_image_frame:
break
frame_values = (
torch.stack(list(frame_dict.values()))
if modality == "video"
else torch.cat(list(frame_dict.values()), dim=1).permute(1, 0)
)
if frame_selection_method == FrameSelectionMethod.RANDOM:
frame_indices = rng.choice(
len(frame_values),
min(num_frames, len(frame_values)),
replace=key_frames_only,
)
elif frame_selection_method == FrameSelectionMethod.UNIFORM:
frame_indices = np.linspace(
0,
len(frame_values),
min(num_frames, len(frame_values)),
endpoint=False,
dtype=int,
)
elif frame_selection_method == FrameSelectionMethod.SEQUENTIAL:
frame_indices = np.arange(0, min(num_frames, len(frame_values)))
frame_indices = sorted(set(frame_indices))
output = frame_values[frame_indices]
if modality == "video" and len(output.shape) == 3:
output = output.unsqueeze(0)
return output
def test_extract_frames_video_pyav():
video_path = "/data/datasets/tali-wit-2-1-buckets/video_data.parquet/550/550321/4chLRYT8ylY/360p_90.mp4"
video_path = "/data/datasets/tali-wit-2-1-buckets//video_data.parquet/10/10586/SA7bKo4HRTg/360p_0.mp4"
modality = "video"
start_time = 10
end_time = 20
num_frames = 30
rng = np.random.default_rng()
for selection_method in [
FrameSelectionMethod.RANDOM,
FrameSelectionMethod.UNIFORM,
FrameSelectionMethod.SEQUENTIAL,
]:
for i in range(5):
time_list = []
for key_frames_only in [False]:
start_fn_time = time.time()
frames = extract_frames_pyav(
video_path=video_path,
modality=modality,
starting_second=start_time,
ending_second=end_time,
num_frames=num_frames,
rng=rng,
frame_selection_method=selection_method,
key_frames_only=key_frames_only,
)
end_fn_time = time.time()
time_list.append(end_fn_time - start_fn_time)
print(
f"Using {selection_method} frame selection method π², with key_frames_only: {key_frames_only}, have extracted {frames.shape}, mean time {np.mean(time_list)} seconds, std time {np.std(time_list)} seconds"
)
def test_extract_frames_audio_pyav():
video_path = "/data/datasets/tali-wit-2-1-buckets/video_data.parquet/550/550321/4chLRYT8ylY/360p_90.mp4"
video_path = "/data/datasets/tali-wit-2-1-buckets//video_data.parquet/10/10586/SA7bKo4HRTg/360p_0.mp4"
modality = "audio"
start_time = 10
end_time = 20
num_frames = 88200
rng = np.random.default_rng()
for selection_method in [
FrameSelectionMethod.RANDOM,
FrameSelectionMethod.UNIFORM,
FrameSelectionMethod.SEQUENTIAL,
]:
for i in range(5):
time_list = []
for key_frames_only in [False]:
start_fn_time = time.time()
frames = extract_frames_pyav(
video_path=video_path,
modality=modality,
starting_second=start_time,
ending_second=end_time,
num_frames=num_frames,
rng=rng,
frame_selection_method=selection_method,
key_frames_only=key_frames_only,
stereo_audio_if_available=False,
)
end_fn_time = time.time()
time_list.append(end_fn_time - start_fn_time)
print(
f"Using {selection_method} frame selection method π², with key_frames_only: {key_frames_only}, have extracted {frames.shape}, mean time {np.mean(time_list)} seconds, std time {np.std(time_list)} seconds"
)
if __name__ == "__main__":
# test_extract_frames_torchvision()
# test_extract_frames_video_pyav()
test_extract_frames_audio_pyav()
|