more_testing / frames.py
obrookes
add str byte decoding
4ce4025
raw
history blame
7.35 kB
import contextlib
import functools
import io
import os
import time
from typing import Union
import av
import numpy as np
import torch
class FrameSelectionMethod:
"""
Enum-like class for frame selection methods 🎞
"""
RANDOM: str = "random" # 🎲
UNIFORM: str = "uniform" # 📏
SEQUENTIAL: str = "sequential" #
def seek_to_second(container, stream, second):
# Convert the second to the stream's time base
timestamp = int(
second * stream.time_base.denominator / stream.time_base.numerator
)
# Seek to the timestamp
container.seek(timestamp, stream=stream)
return container
def duration_in_seconds(stream):
return float(stream.duration * stream.time_base)
def frame_timestamp_in_seconds(frame, stream):
return float(frame.pts * stream.time_base)
def duration_in_seconds_from_path(video_path, modality):
with av.open(video_path) as container:
stream = next(s for s in container.streams if s.type == modality)
return duration_in_seconds(stream)
def suppress_stderr(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
with open(os.devnull, "w") as devnull:
with contextlib.redirect_stderr(devnull):
return func(*args, **kwargs)
return wrapper
@suppress_stderr
def extract_frames_pyav(
video_data: Union[str, bytes],
modality: str,
starting_second: float,
ending_second: float,
num_frames: int,
rng: np.random.Generator,
frame_selection_method: str = "RANDOM",
key_frames_only: bool = False,
stereo_audio_if_available: bool = False,
single_image_frame: bool = False,
) -> torch.Tensor:
frame_dict = {}
video_source = (
io.BytesIO(video_data) if isinstance(video_data, bytes) else video_data
)
with av.open(video_source) as container:
stream = next(s for s in container.streams if s.type == modality)
if key_frames_only:
stream.codec_context.skip_frame = "NONKEY"
container = seek_to_second(container, stream, starting_second)
# Get the duration of the video
video_duration = duration_in_seconds(stream)
# print(f"Video duration: {video_duration} seconds")
# Get the FPS of the video
video_fps = stream.average_rate
# print(f"Video FPS: {video_fps}")
for frame in container.decode(stream):
# logger.info(f"Frame timestamp: {frame}")
frame_timestamp = frame_timestamp_in_seconds(frame, stream)
# logger.info(f"Frame timestamp: {frame_timestamp}")
array_frame = torch.from_numpy(
frame.to_ndarray(
format="rgb24" if modality == "video" else None
)
)
if modality == "video" and len(array_frame.shape) == 2:
array_frame = array_frame.unsqueeze(0)
if modality == "audio" and not stereo_audio_if_available:
array_frame = array_frame[0].unsqueeze(0)
if frame_timestamp > ending_second:
break
frame_dict[frame_timestamp] = array_frame
# logger.info(f"Frame dict: {frame_dict}")
if single_image_frame:
break
frame_values = (
torch.stack(list(frame_dict.values()))
if modality == "video"
else torch.cat(list(frame_dict.values()), dim=1).permute(1, 0)
)
if frame_selection_method == FrameSelectionMethod.RANDOM:
frame_indices = rng.choice(
len(frame_values),
min(num_frames, len(frame_values)),
replace=key_frames_only,
)
elif frame_selection_method == FrameSelectionMethod.UNIFORM:
frame_indices = np.linspace(
0,
len(frame_values),
min(num_frames, len(frame_values)),
endpoint=False,
dtype=int,
)
elif frame_selection_method == FrameSelectionMethod.SEQUENTIAL:
frame_indices = np.arange(0, min(num_frames, len(frame_values)))
frame_indices = sorted(set(frame_indices))
output = frame_values[frame_indices]
if modality == "video" and len(output.shape) == 3:
output = output.unsqueeze(0)
return output
def test_extract_frames_video_pyav():
video_path = "/data/datasets/tali-wit-2-1-buckets/video_data.parquet/550/550321/4chLRYT8ylY/360p_90.mp4"
video_path = "/data/datasets/tali-wit-2-1-buckets//video_data.parquet/10/10586/SA7bKo4HRTg/360p_0.mp4"
modality = "video"
start_time = 10
end_time = 20
num_frames = 30
rng = np.random.default_rng()
for selection_method in [
FrameSelectionMethod.RANDOM,
FrameSelectionMethod.UNIFORM,
FrameSelectionMethod.SEQUENTIAL,
]:
for i in range(5):
time_list = []
for key_frames_only in [False]:
start_fn_time = time.time()
frames = extract_frames_pyav(
video_path=video_path,
modality=modality,
starting_second=start_time,
ending_second=end_time,
num_frames=num_frames,
rng=rng,
frame_selection_method=selection_method,
key_frames_only=key_frames_only,
)
end_fn_time = time.time()
time_list.append(end_fn_time - start_fn_time)
print(
f"Using {selection_method} frame selection method 🎲, with key_frames_only: {key_frames_only}, have extracted {frames.shape}, mean time {np.mean(time_list)} seconds, std time {np.std(time_list)} seconds"
)
def test_extract_frames_audio_pyav():
video_path = "/data/datasets/tali-wit-2-1-buckets/video_data.parquet/550/550321/4chLRYT8ylY/360p_90.mp4"
video_path = "/data/datasets/tali-wit-2-1-buckets//video_data.parquet/10/10586/SA7bKo4HRTg/360p_0.mp4"
modality = "audio"
start_time = 10
end_time = 20
num_frames = 88200
rng = np.random.default_rng()
for selection_method in [
FrameSelectionMethod.RANDOM,
FrameSelectionMethod.UNIFORM,
FrameSelectionMethod.SEQUENTIAL,
]:
for i in range(5):
time_list = []
for key_frames_only in [False]:
start_fn_time = time.time()
frames = extract_frames_pyav(
video_path=video_path,
modality=modality,
starting_second=start_time,
ending_second=end_time,
num_frames=num_frames,
rng=rng,
frame_selection_method=selection_method,
key_frames_only=key_frames_only,
stereo_audio_if_available=False,
)
end_fn_time = time.time()
time_list.append(end_fn_time - start_fn_time)
print(
f"Using {selection_method} frame selection method 🎲, with key_frames_only: {key_frames_only}, have extracted {frames.shape}, mean time {np.mean(time_list)} seconds, std time {np.std(time_list)} seconds"
)
if __name__ == "__main__":
# test_extract_frames_torchvision()
# test_extract_frames_video_pyav()
test_extract_frames_audio_pyav()