ogozcelik commited on
Commit
de92603
1 Parent(s): 979192c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -3
README.md CHANGED
@@ -1,3 +1,65 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - text-classification
5
+ language:
6
+ - en
7
+ size_categories:
8
+ - 1K<n<10K
9
+ pretty_name: mide22-en
10
+ ---
11
+
12
+ # MiDe22: An Annotated Multi-Event Tweet Dataset for Misinformation Detection
13
+
14
+ 5,284 English tweets with their misinformation labels for several recent events between 2020 and 2022, including the Russia-Ukraine war, COVID-19 pandemic, and Refugees. The dataset also includes user engagements with the tweets in terms of likes, replies, retweets, and quotes. For user engagements please use contact at the end of the dataset card.
15
+
16
+ ## Data Fields
17
+ - `tweet`: a `string` feature.
18
+ - `label`: a classification label, with possible values including `True`, `False`, `Other`.
19
+
20
+ ## Data Size
21
+ |classes|true|false|other|
22
+ |-------|---:|----:|----:|
23
+ |tweets |727 |1,729|2,828|
24
+
25
+ ## Annotations
26
+
27
+ Tweets are labeled in terms of three classes: True, False, and Other.
28
+ - `True`: tweets with the correct information regarding the corresponding event.
29
+ - `False`: tweets with misinformation on the corresponding event.
30
+ - `Other`: tweets that cannot be categorized under false or true information.
31
+
32
+ ## Annotation process
33
+
34
+ This dataset is annotated by five annotators. Each tweet is annotated by at least two annotators, we calculate Krippendorf’s alpha reliability to measure interannotator agreement (IAA). The resulting alpha
35
+ coefficient is 0.785. Details are given in [our paper](https://aclanthology.org/2024.lrec-main.986/).
36
+
37
+ ## Dataset Sources [optional]
38
+
39
+ <!-- Provide the basic links for the dataset. -->
40
+
41
+ - **Repository:** More details on [GitHub](https://github.com/ogozcelik/MiDe22)
42
+ - **Paper [optional]:** [LREC-COLING 2024](https://aclanthology.org/2024.lrec-main.986/)
43
+
44
+ ## Citation
45
+
46
+ ```
47
+ @inproceedings{toraman-etal-2024-mide22-annotated,
48
+ title = "{M}i{D}e22: An Annotated Multi-Event Tweet Dataset for Misinformation Detection",
49
+ author = "Toraman, Cagri and
50
+ Ozcelik, Oguzhan and
51
+ Sahinuc, Furkan and
52
+ Can, Fazli",
53
+ booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
54
+ month = may,
55
+ year = "2024",
56
+ address = "Torino, Italia",
57
+ publisher = "ELRA and ICCL",
58
+ url = "https://aclanthology.org/2024.lrec-main.986",
59
+ pages = "11283--11295",
60
+ }
61
+ ```
62
+
63
+ ## Dataset Card Contact
64
+
65
+ ogozcelik[at]gmail[dot]com