File size: 5,923 Bytes
b98ffbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from dora import DoraStatus
import pylcs
import textwrap
import pandas as pd
import os
import pyarrow as pa
import numpy as np
from ctransformers import AutoModelForCausalLM
import json

MIN_NUMBER_LINES = 4
MAX_NUMBER_LINES = 21


def search_most_simlar_line(text, searched_line):
    lines = text.split("\n")
    values = []

    for line in lines[MIN_NUMBER_LINES:MAX_NUMBER_LINES]:
        values.append(pylcs.edit_distance(line, searched_line))
    output = lines[np.array(values).argmin() + MIN_NUMBER_LINES]
    return output


def strip_indentation(code_block):
    # Use textwrap.dedent to strip common leading whitespace
    dedented_code = textwrap.dedent(code_block)

    return dedented_code


def replace_code_with_indentation(original_code, replacement_code):
    # Split the original code into lines
    lines = original_code.splitlines()
    if len(lines) != 0:
        # Preserve the indentation of the first line
        indentation = lines[0][: len(lines[0]) - len(lines[0].lstrip())]

        # Create a new list of lines with the replacement code and preserved indentation
        new_code_lines = indentation + replacement_code
    else:
        new_code_lines = replacement_code
    return new_code_lines


def replace_source_code(source_code, gen_replacement):
    initial = search_most_simlar_line(source_code, gen_replacement)
    print("Initial source code: %s" % initial)
    replacement = strip_indentation(
        gen_replacement.replace("```python\n", "")
        .replace("\n```", "")
        .replace("\n", "")
    )
    intermediate_result = replace_code_with_indentation(initial, replacement)
    print("Intermediate result: %s" % intermediate_result)
    end_result = source_code.replace(initial, intermediate_result)
    return end_result


def save_as(content, path):
    # use at the end of replace_2 as save_as(end_result, "file_path")
    with open(path, "w") as file:
        file.write(content)


class Operator:
    def __init__(self):
        # Load tokenizer
        self.llm = AutoModelForCausalLM.from_pretrained(
            "TheBloke/OpenHermes-2.5-Mistral-7B-GGUF",
            model_file="openhermes-2.5-mistral-7b.Q4_K_M.gguf",
            model_type="mistral",
            gpu_layers=50,
        )

    def on_event(
        self,
        dora_event,
        send_output,
    ) -> DoraStatus:
        if dora_event["type"] == "INPUT":
            input = dora_event["value"][0].as_py()

            if False:
                with open(input["path"], "r", encoding="utf8") as f:
                    raw = f.read()
                prompt = f"{raw[:400]} \n\n {input['query']}.  "
                output = self.ask_mistral(
                    "You're a python code expert. Respond with only one line of code that modify a constant variable. Keep the uppercase.",
                    prompt,
                )
                print("output: {}".format(output))

                source_code = replace_source_code(raw, output)
                send_output(
                    "output_file",
                    pa.array(
                        [
                            {
                                "raw": source_code,
                                "path": input["path"],
                                "response": output,
                                "prompt": prompt,
                            }
                        ]
                    ),
                    dora_event["metadata"],
                )
            else:
                print("input: ", input, flush=True)
                output = self.ask_mistral(
                    """You're a json expert. Format your response as a json with a topic field and a data field. 
The schema for those json are:
- led: Int[3] (min: 0, max: 255)
- blaster: Int (min: 0, max: 128)
- control: Int[3] (min: -1, max: 1)
- rotation: Int[2] (min: -55, max: 55)


""",
                    input["query"],
                )
                print("output: {}".format(output), flush=True)
                try:
                    output = json.loads(output)
                    if not isinstance(output["data"], list):
                        output["data"] = [output["data"]]

                    if output["topic"] in ["led", "blaster", "control", "rotation"]:
                        print("output", output)
                        send_output(
                            output["topic"],
                            pa.array(output["data"]),
                            dora_event["metadata"],
                        )
                except:
                    print("Could not parse json")
                # if data is not iterable, put data in a list

        return DoraStatus.CONTINUE

    def ask_mistral(self, system_message, prompt):
        prompt_template = f"""<|im_start|>system
        {system_message}<|im_end|>
        <|im_start|>user
        {prompt}<|im_end|>
        <|im_start|>assistant
        """

        # Generate output
        outputs = self.llm(
            prompt_template,
        )
        # Get the tokens from the output, decode them, print them

        # Get text between im_start and im_end
        return outputs.split("<|im_end|>")[0]


if __name__ == "__main__":
    op = Operator()

    # Path to the current file
    current_file_path = __file__

    # Directory of the current file
    current_directory = os.path.dirname(current_file_path)

    path = current_directory + "/planning_op.py"
    with open(path, "r", encoding="utf8") as f:
        raw = f.read()

    op.on_event(
        {
            "type": "INPUT",
            "id": "tick",
            "value": pa.array(
                [
                    {
                        "raw": raw,
                        "path": path,
                        "query": "le control a 1 0 0",
                    }
                ]
            ),
            "metadata": [],
        },
        print,
    )